論文の概要: NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis
- arxiv url: http://arxiv.org/abs/2405.19348v1
- Date: Tue, 21 May 2024 14:01:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-02 14:20:20.409504
- Title: NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis
- Title(参考訳): NERULA:心電図信号解析のためのデュアルパスウェイ自己監督学習フレームワーク
- Authors: Gouthamaan Manimaran, Sadasivan Puthusserypady, Helena Domínguez, Adrian Atienza, Jakob E. Bardram,
- Abstract要約: 本稿では,シングルリードECG信号を対象とした自己教師型フレームワークNERULAを提案する。
NERULAのデュアルパスウェイアーキテクチャは、心電図再構成と非コントラスト学習を組み合わせて、詳細な心臓の特徴を抽出する。
学習スペクトルに生成経路と識別経路を組み合わせることで、様々なタスクにおいて最先端の自己教師付き学習ベンチマークより優れた結果が得られることを示す。
- 参考スコア(独自算出の注目度): 5.8961928852930034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) signals are critical for diagnosing heart conditions and capturing detailed cardiac patterns. As wearable single-lead ECG devices become more common, efficient analysis methods are essential. We present NERULA (Non-contrastive ECG and Reconstruction Unsupervised Learning Algorithm), a self-supervised framework designed for single-lead ECG signals. NERULA's dual-pathway architecture combines ECG reconstruction and non-contrastive learning to extract detailed cardiac features. Our 50% masking strategy, using both masked and inverse-masked signals, enhances model robustness against real-world incomplete or corrupted data. The non-contrastive pathway aligns representations of masked and inverse-masked signals, while the reconstruction pathway comprehends and reconstructs missing features. We show that combining generative and discriminative paths into the training spectrum leads to better results by outperforming state-of-the-art self-supervised learning benchmarks in various tasks, demonstrating superior performance in ECG analysis, including arrhythmia classification, gender classification, age regression, and human activity recognition. NERULA's dual-pathway design offers a robust, efficient solution for comprehensive ECG signal interpretation.
- Abstract(参考訳): 心電図(ECG)信号は、心臓の状態を診断し、詳細な心パターンを捉えるのに重要である。
ウェアラブルなシングルリードECGデバイスがより一般的になるにつれて、効率的な分析方法が不可欠である。
本稿では, NERULA (Non-contrastive ECG and Reconstruction Unsupervised Learning Algorithm) を提案する。
NERULAのデュアルパスウェイアーキテクチャは、心電図再構成と非コントラスト学習を組み合わせて、詳細な心臓の特徴を抽出する。
我々の50%のマスキング戦略は、マスクされた信号と逆マスキングされた信号の両方を用いて、現実世界の不完全または破損したデータに対するモデルロバスト性を高める。
非競合経路はマスクと逆マスク信号の表現を整列し、再構成経路は欠落した特徴を理解し、再構成する。
不整脈分類、性別分類、年齢回帰、人間の活動認識など、心電図解析における優れた性能を示すことにより、トレーニングスペクトルに生成経路と識別経路を組み合わせることで、様々なタスクにおける最先端の自己教師付き学習ベンチマークよりも優れた結果が得られることを示す。
NERULAのデュアルパス設計は、包括的なECG信号解釈のための堅牢で効率的なソリューションを提供する。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion [1.727597257312416]
完全12誘導ECG信号を不完全部分から再構成するという課題に対処する。
再建問題に対処するために,新しい目的関数を訓練したU-Netアーキテクチャを用いたモデルを提案する。
論文 参考訳(メタデータ) (2024-05-31T15:17:12Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
入力ECG信号はまずセグメント化され、正規化され、その後、特徴抽出と分類のためにVGGとLSTMネットワークに入力される。
注目機構(SEブロック)をコアネットワークに組み込んで重要な特徴の重み付けを行う。
論文 参考訳(メタデータ) (2022-10-31T07:36:48Z) - Learning ECG Representations based on Manipulated Temporal-Spatial
Reverse Detection [11.615287369669971]
本稿では,ECG表現を学習する上で,単純だが効果的な手法を提案する。
ECGの時間的特性と空間的特性にインスパイアされ、元の信号を水平に、垂直に、そして水平に、そして垂直に、それぞれ反転させる。
その結果,本手法で学習したECG表現は,下流タスクにおいて顕著な性能を示すことがわかった。
論文 参考訳(メタデータ) (2022-02-25T02:01:09Z) - ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional
Generative Adversarial Networks [4.250203361580781]
ディープニューラルネットワークは、心電図信号を追跡するための一般的なテクニックとなり、人間の専門家より優れています。
GANアーキテクチャは、敵ECG信号を合成し、既存のトレーニングデータを増やすために近年研究されている。
本稿では,心電図信号を同時に生成し,心的異常を検出するための条件生成広告ネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T02:53:14Z) - Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation [3.3426603061273994]
本稿では,ECG信号を8つのクラスに分類するための2次元(2次元)畳み込みニューラルネットワーク(CNN)モデルを提案する。
我々は,最新の平均分類精度99.11%を達成し,同種の不整脈の分類において,最近報告した結果より優れている。
論文 参考訳(メタデータ) (2020-05-14T12:11:41Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
心電図(PCG)信号を心臓状態に分割するための新しい枠組みを提案する。
我々は近年の注目に基づく学習の進歩を利用してPCG信号のセグメンテーションを行う。
提案手法は,ヒトと動物の両方の心臓記録を含む複数のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-04-02T02:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。