論文の概要: {\mu}Split: efficient image decomposition for microscopy data
- arxiv url: http://arxiv.org/abs/2211.12872v5
- Date: Wed, 16 Aug 2023 19:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 20:04:43.203881
- Title: {\mu}Split: efficient image decomposition for microscopy data
- Title(参考訳): 顕微鏡データの効率的な画像分解
- Authors: Ashesh, Alexander Krull, Moises Di Sante, Francesco Silvio Pasqualini,
Florian Jug
- Abstract要約: muSplitは、蛍光顕微鏡画像の文脈で訓練された画像分解のための専用アプローチである。
本稿では,大規模な画像コンテキストのメモリ効率向上を実現するメタアーキテクチャである横型文脈化(LC)を提案する。
muSplitを5つの分解タスクに適用し、1つは合成データセットに、もう4つは実際の顕微鏡データから導出する。
- 参考スコア(独自算出の注目度): 50.794670705085835
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present {\mu}Split, a dedicated approach for trained image decomposition
in the context of fluorescence microscopy images. We find that best results
using regular deep architectures are achieved when large image patches are used
during training, making memory consumption the limiting factor to further
improving performance. We therefore introduce lateral contextualization (LC), a
novel meta-architecture that enables the memory efficient incorporation of
large image-context, which we observe is a key ingredient to solving the image
decomposition task at hand. We integrate LC with U-Nets, Hierarchical AEs, and
Hierarchical VAEs, for which we formulate a modified ELBO loss. Additionally,
LC enables training deeper hierarchical models than otherwise possible and,
interestingly, helps to reduce tiling artefacts that are inherently impossible
to avoid when using tiled VAE predictions. We apply {\mu}Split to five
decomposition tasks, one on a synthetic dataset, four others derived from real
microscopy data. Our method consistently achieves best results (average
improvements to the best baseline of 2.25 dB PSNR), while simultaneously
requiring considerably less GPU memory. Our code and datasets can be found at
https://github.com/juglab/uSplit.
- Abstract(参考訳): 蛍光顕微鏡画像の文脈における画像分解のための専用手法である {\mu}Splitを提案する。
トレーニング中に大きなイメージパッチを使用すると,通常のディープアーキテクチャによる最良の結果が得られることが分かり,メモリ消費が性能向上の限界要因となる。
そこで本稿では,画像分解課題を解決する上で重要な要素である大規模画像コンテキストのメモリ効率の向上を可能にする新しいメタアーキテクチャである横文脈化(lc)を紹介する。
LCをU-Net、階層型AE、階層型VAEと統合し、改良されたELBO損失を定式化する。
さらにLCは、他の可能性よりも深い階層モデルのトレーニングを可能にし、興味深いことに、タイル付きVAE予測を使用する場合、本質的に避けられないティアリングアーチファクトを減らすのに役立ちます。
我々は、合成データセット上の5つの分解タスクに {\mu}splitを適用し、その他4つは実顕微鏡データから導出する。
提案手法は、GPUメモリを著しく削減しつつ、常に最良の結果(平均2.25dBPSNRのベースラインの改善)を達成する。
コードとデータセットはhttps://github.com/juglab/uSplit.comで確認できます。
関連論文リスト
- Serpent: Scalable and Efficient Image Restoration via Multi-scale Structured State Space Models [22.702352459581434]
サーペントは高解像度画像復元のための効率的なアーキテクチャである。
本稿では,Serpentが最先端技術に匹敵する再現性が得られることを示す。
論文 参考訳(メタデータ) (2024-03-26T17:43:15Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - Raw Image Reconstruction with Learned Compact Metadata [61.62454853089346]
本稿では,メタデータとしての潜在空間におけるコンパクトな表現をエンドツーエンドで学習するための新しいフレームワークを提案する。
提案する生画像圧縮方式は,グローバルな視点から重要な画像領域に適応的により多くのビットを割り当てることができることを示す。
論文 参考訳(メタデータ) (2023-02-25T05:29:45Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - Rethinking the Paradigm of Content Constraints in Unpaired
Image-to-Image Translation [9.900050049833986]
本稿では,パッチレベルの特徴の潜在空間における表現的類似性を制約することにより,コンテンツ管理のシンプルかつ効率的な方法であるEnCoを提案する。
類似性関数に対しては、I2Iタスクで広く使われている対照的な損失ではなく、単純なMSE損失を用いる。
さらに, 識別者によるサンプリングにおける役割を再考し, ランダムサンプリングの代替として, DAG(Disdisnative attention-guided)パッチサンプリング戦略を提案する。
論文 参考訳(メタデータ) (2022-11-20T04:39:57Z) - Joint Super-Resolution and Inverse Tone-Mapping: A Feature Decomposition
Aggregation Network and A New Benchmark [0.0]
本稿では,分解機構の潜在的なパワーを活用するために,FDAN(Feature Decomposition Aggregation Network)を提案する。
特に,特徴分解ブロック(FDB)を設計し,詳細と基本特徴マップの学習可能な分離を実現する。
また、SRITM-4K(SRITM-4K)という共同SR-ITMのための大規模データセットも収集し、堅牢なモデルトレーニングと評価のための汎用シナリオを提供する。
論文 参考訳(メタデータ) (2022-07-07T15:16:36Z) - Learning strides in convolutional neural networks [34.20666933112202]
この研究は、学習可能なステップを持つ最初のダウンサンプリング層であるDiffStrideを紹介している。
音声と画像の分類実験は,ソリューションの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2022-02-03T16:03:36Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - Adaptive Fractional Dilated Convolution Network for Image Aesthetics
Assessment [33.945579916184364]
適応型分数拡張畳み込み(AFDC)は、畳み込みカーネルレベルでこの問題に取り組むために開発された。
ミニバッチ学習のための簡潔な定式化を行い,グループ化戦略を用いて計算オーバーヘッドを削減する。
提案手法は,AVAデータセットを用いた画像美学評価において,最先端の性能を実現することを実証した。
論文 参考訳(メタデータ) (2020-04-06T21:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。