論文の概要: A Survey of Deep Graph Clustering: Taxonomy, Challenge, and Application
- arxiv url: http://arxiv.org/abs/2211.12875v2
- Date: Thu, 24 Nov 2022 02:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 12:09:18.983508
- Title: A Survey of Deep Graph Clustering: Taxonomy, Challenge, and Application
- Title(参考訳): ディープグラフクラスタリングに関する調査:分類学、挑戦、応用
- Authors: Yue Liu, Jun Xia, Sihang Zhou, Siwei Wang, Xifeng Guo, Xihong Yang, Ke
Liang, Wenxuan Tu, Stan Z. Li, Xinwang Liu
- Abstract要約: 本稿では,ディープグラフクラスタリングの包括的調査を行う。
ディープグラフクラスタリング手法の分類法は,グラフタイプ,ネットワークアーキテクチャ,学習パラダイム,クラスタリング手法に基づいて提案される。
4つの領域におけるディープグラフクラスタリングの応用について述べる。
- 参考スコア(独自算出の注目度): 65.1545620985802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph clustering, which aims to divide the nodes in the graph into several
distinct clusters, is a fundamental and challenging task. In recent years, deep
graph clustering methods have been increasingly proposed and achieved promising
performance. However, the corresponding survey paper is scarce and it is
imminent to make a summary in this field. From this motivation, this paper
makes the first comprehensive survey of deep graph clustering. Firstly, the
detailed definition of deep graph clustering and the important baseline methods
are introduced. Besides, the taxonomy of deep graph clustering methods is
proposed based on four different criteria including graph type, network
architecture, learning paradigm, and clustering method. In addition, through
the careful analysis of the existing works, the challenges and opportunities
from five perspectives are summarized. At last, the applications of deep graph
clustering in four domains are presented. It is worth mentioning that a
collection of state-of-the-art deep graph clustering methods including papers,
codes, and datasets is available on GitHub. We hope this work will serve as a
quick guide and help researchers to overcome challenges in this vibrant field.
- Abstract(参考訳): グラフクラスタリングは、グラフのノードを複数の異なるクラスタに分割することを目的としています。
近年,ディープグラフクラスタリング手法が提案され,有望な性能を達成している。
しかし、それに対応する調査論文は乏しく、この分野で概要を述べることは差し迫っている。
この動機から,本論文はディープグラフクラスタリングに関する最初の包括的調査を行う。
まず,ディープグラフクラスタリングの詳細な定義と重要なベースライン手法を紹介する。
さらに,グラフタイプ,ネットワークアーキテクチャ,学習パラダイム,クラスタリング手法の4つの異なる基準に基づいて,ディープグラフクラスタリング手法の分類法を提案する。
さらに,既存の作品の慎重な分析を通じて,5つの観点からの課題と機会を要約した。
最後に、4つの領域におけるディープグラフクラスタリングの応用について述べる。
論文やコード,データセットなど,最先端のディープグラフクラスタリングメソッドのコレクションがgithubで公開されている点に注意が必要だ。
この研究がクイックガイドとなり、この活気ある分野の課題を克服するのに役立つことを期待しています。
関連論文リスト
- Advanced Graph Clustering Methods: A Comprehensive and In-Depth Analysis [0.0]
本稿では,従来のグラフクラスタリング手法と最近のグラフクラスタリング手法について検討する。
背景のセクションでは、グラフラプラシアンやグラフ解析におけるディープラーニングの統合など、重要なトピックが取り上げられている。
本稿では,グラフクラスタリングの実践的応用について論じる。
論文 参考訳(メタデータ) (2024-07-12T07:22:45Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
本稿では,グラフニューラルネットワークを用いてモジュラリティの目的を最適化し,グラフサイズと線形にスケールする新しい手法DGClusterを提案する。
私たちはDGClusterを、さまざまなサイズの実世界のデータセットで、複数の一般的なクラスタ品質メトリクスで広範囲にテストしています。
われわれの手法は最先端の手法よりも一貫して優れており、ほぼすべての設定で顕著な性能向上を示している。
論文 参考訳(メタデータ) (2023-12-20T01:43:55Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
多くの現実世界のシステムは、システム内の異なるエンティティがノードによって表現され、エッジによって相互作用するグラフとして表現することができる。
グラフィカルな構造を持つ大規模なデータセットを研究する上で重要なタスクはグラフクラスタリングである。
本稿では,FIR(Finite Impulse Response)およびARMA(Autoregressive moving Average)グラフフィルタのパラメータをクラスタリングに最適化したグラフ信号処理手法を提案する。
論文 参考訳(メタデータ) (2022-11-09T01:49:23Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
本稿では,グラフレベルのクラスタリングの問題について検討する。
GLCC(Graph-Level Contrastive Clustering)というグラフレベルの一般的なクラスタリングフレームワークを提案する。
様々なよく知られたデータセットに対する実験は、競合するベースラインよりも提案したGLCCの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:08:10Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Community Detection Clustering via Gumbel Softmax [0.0]
本稿では,様々なグラフデータセットのノードをクラスタリングするコミュニティ検出手法を提案する。
ネットワーク内のノード間の相互作用をモデル化する深層学習の役割は、グラフネットワーク分析に関連する科学の分野に革命をもたらす。
論文 参考訳(メタデータ) (2020-05-05T17:55:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。