論文の概要: Motif-aware temporal GCN for fraud detection in signed cryptocurrency
trust networks
- arxiv url: http://arxiv.org/abs/2211.13123v1
- Date: Tue, 22 Nov 2022 02:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 14:48:57.889500
- Title: Motif-aware temporal GCN for fraud detection in signed cryptocurrency
trust networks
- Title(参考訳): 署名暗号信頼ネットワークにおける不正検出のためのモチーフ対応時間GCN
- Authors: Chong Mo, Song Li, Geoffrey K. F. Tso, Jiandong Zhou, Yiyan Qi,
Mingjie Zhu
- Abstract要約: グラフ畳み込みネットワーク(GCN)はグラフとして表現可能なデータ処理に使用される。
本研究では,暗号ネットワークの進化的性質を考察し,局所構造とバランス理論を用いてトレーニングプロセスの導出を行う。
bitcoin-alphaとbitcoin-otcデータセットの実験的結果は、提案されたモデルが文献上のモデルより優れていることを示している。
- 参考スコア(独自算出の注目度): 6.329239773189514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) is a class of artificial neural networks
for processing data that can be represented as graphs. Since financial
transactions can naturally be constructed as graphs, GCNs are widely applied in
the financial industry, especially for financial fraud detection. In this
paper, we focus on fraud detection on cryptocurrency truct networks. In the
literature, most works focus on static networks. Whereas in this study, we
consider the evolving nature of cryptocurrency networks, and use local
structural as well as the balance theory to guide the training process. More
specifically, we compute motif matrices to capture the local topological
information, then use them in the GCN aggregation process. The generated
embedding at each snapshot is a weighted average of embeddings within a time
window, where the weights are learnable parameters. Since the trust networks is
signed on each edge, balance theory is used to guide the training process.
Experimental results on bitcoin-alpha and bitcoin-otc datasets show that the
proposed model outperforms those in the literature.
- Abstract(参考訳): グラフ畳み込みネットワーク(Graph Convolutional Network、GCN)は、グラフとして表現可能なデータを処理するためのニューラルネットワークの一種である。
金融取引はグラフとして自然に構築できるため、GCNは金融業界、特に金融不正検出に広く適用されている。
本稿では,暗号通貨取引ネットワークにおける不正検出に焦点をあてる。
文献では、ほとんどの作品は静的ネットワークに焦点を当てている。
本研究では,暗号通貨ネットワークの進化的性質を考察し,局所構造とバランス理論を用いて学習過程の指導を行う。
より具体的には、モチーフ行列を計算して局所的なトポロジ情報をキャプチャし、GCNアグリゲーションプロセスでそれらを利用する。
各スナップショットで生成された埋め込みは、重み付けが学習可能なパラメータであるタイムウィンドウ内の重み付け平均である。
信頼ネットワークは各エッジに署名されているため、バランス理論はトレーニングプロセスのガイドに使用される。
bitcoin-alpha と bitcoin-otc データセットでの実験的結果は、提案モデルが文献のモデルよりも優れていることを示している。
関連論文リスト
- Stealing Training Graphs from Graph Neural Networks [54.52392250297907]
グラフニューラルネットワーク(GNN)は、様々なタスクにおけるグラフのモデリングにおいて有望な結果を示している。
ニューラルネットワークがトレーニングサンプルを記憶できるため、GNNのモデルパラメータはプライベートトレーニングデータをリークするリスクが高い。
訓練されたGNNからグラフを盗むという新しい問題について検討する。
論文 参考訳(メタデータ) (2024-11-17T23:15:36Z) - Review of blockchain application with Graph Neural Networks, Graph Convolutional Networks and Convolutional Neural Networks [0.0]
本稿では、ブロックチェーン技術におけるグラフニューラルネットワーク(GNN)、グラフ畳み込みニューラルネットワーク(GCN)、および畳み込みニューラルネットワーク(CNN)の適用についてレビューする。
論文 参考訳(メタデータ) (2024-10-01T17:11:22Z) - The Shape of Money Laundering: Subgraph Representation Learning on the Blockchain with the Elliptic2 Dataset [6.209290101460395]
サブグラフ表現学習(Subgraph representation learning)は、複雑なネットワーク内の局所構造(または形状)を分析する技術である。
Bitcoinクラスタの122Kラベルのサブグラフを含むグラフデータセットであるElliptic2を紹介する。
このアプローチの即時的な実用価値と、暗号通貨における反マネーロンダリングと法医学的分析における新しい標準の可能性を見出す。
論文 参考訳(メタデータ) (2024-04-29T21:19:41Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal
Link Prediction in Cryptocurrency Transaction Networks [1.6801544027052142]
ネットワークのリンク予測学習構造は,ネットワークのメカニズムを理解する上で有用である。
本稿では,1つの潜在因子依存型,非負性,乗算型,グラフ正規化型更新(SLF-NMGRU)アルゴリズムを提案する。
実際の暗号通貨取引ネットワークの実験により,提案手法は精度と計算効率の両方を向上することを示した。
論文 参考訳(メタデータ) (2022-08-03T08:58:59Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
本論文は,さまざまな手法を用いて,有向グラフネットワークとして表現されるBitcoinトランザクションの現実的なデータセットを解析する。
これは、Graph Convolutional Networks(GCN)とGraph Attention Networks(GAT)として知られるニューラルネットワークタイプが、有望なAML/CFTソリューションであることを示している。
論文 参考訳(メタデータ) (2022-06-07T16:22:55Z) - Wide and Deep Graph Neural Network with Distributed Online Learning [174.8221510182559]
グラフニューラルネットワーク(GNN)は、ネットワークデータから表現を学習するための、自然に分散したアーキテクチャである。
オンライン学習は、この問題を克服するためにテスト時にGNNを再トレーニングするために利用することができる。
本稿では,分散オンライン学習機構で更新可能な新しいアーキテクチャであるWide and Deep GNN(WD-GNN)を開発する。
論文 参考訳(メタデータ) (2021-07-19T23:56:48Z) - TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing
Accounts [2.3112192919085826]
トランザクションサブグラフネットワーク(TSGN)ベースの分類モデルにより、フィッシングアカウントを識別する。
TSGNは、フィッシングアカウントの識別に役立つより多くの潜在的な情報を提供することができます。
論文 参考訳(メタデータ) (2021-04-18T08:12:51Z) - Wide and Deep Graph Neural Networks with Distributed Online Learning [175.96910854433574]
グラフニューラルネットワーク(GNN)は、自然に分散したアーキテクチャでネットワークデータから表現を学習する。
オンライン学習は、テスト時にGNNを再トレーニングするために使用することができ、この問題を克服することができる。
本稿では,分散オンライン学習機構で容易に更新できる新しいアーキテクチャであるWide and Deep GNN(WD-GNN)を提案する。
論文 参考訳(メタデータ) (2020-06-11T12:48:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。