論文の概要: Generalization of Artificial Intelligence Models in Medical Imaging: A
Case-Based Review
- arxiv url: http://arxiv.org/abs/2211.13230v1
- Date: Tue, 15 Nov 2022 10:09:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:51:08.573931
- Title: Generalization of Artificial Intelligence Models in Medical Imaging: A
Case-Based Review
- Title(参考訳): 医用画像における人工知能モデルの一般化 : 症例ベースレビュー
- Authors: Rishi Gadepally, Andrew Gomella, Eric Gingold, Paras Lakhani
- Abstract要約: 様々なAIアルゴリズムの落とし穴を理解するためには,放射線科医の実践が重要である。
AIの使用は、それを支援するものに対するリスクとメリットの根本的な理解によって先行するべきである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The discussions around Artificial Intelligence (AI) and medical imaging are
centered around the success of deep learning algorithms. As new algorithms
enter the market, it is important for practicing radiologists to understand the
pitfalls of various AI algorithms. This entails having a basic understanding of
how algorithms are developed, the kind of data they are trained on, and the
settings in which they will be deployed. As with all new technologies, use of
AI should be preceded by a fundamental understanding of the risks and benefits
to those it is intended to help. This case-based review is intended to point
out specific factors practicing radiologists who intend to use AI should
consider.
- Abstract(参考訳): 人工知能(AI)と医用画像に関する議論は、ディープラーニングアルゴリズムの成功を中心に行われている。
新しいアルゴリズムが市場に参入するにつれ、様々なAIアルゴリズムの落とし穴を理解するために放射線学者を実践することが重要である。
これには、アルゴリズムの開発方法、トレーニングされたデータの種類、デプロイされる設定に関する基本的な理解が伴う。
すべての新しい技術と同様に、AIの使用は、それを支援することを意図した人々に対するリスクとメリットの根本的な理解によって先行するべきである。
このケースベースのレビューは、AIを使うつもりの放射線科医が考慮すべき特定の要因を指摘することを目的としている。
関連論文リスト
- The Limits of Fair Medical Imaging AI In The Wild [43.97266228706059]
医療用AIが人口統計エンコーディングをどのように利用するかを検討する。
医療画像AIは、疾患分類において、人口動態のショートカットを利用することを確認した。
人口統計属性のエンコーディングが少ないモデルは、しばしば「グローバルに最適」であることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:59:50Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
システムモデルを自動的に導出する際、AIアルゴリズムは人間には検出できないデータで関係を学習する。
モデルが複雑になればなるほど、人間が意思決定の理由を理解するのが難しくなる。
この研究は、この話題に関する広範な文献調査を提供し、その大部分は、他の調査から成っている。
論文 参考訳(メタデータ) (2022-10-11T06:21:47Z) - Diagnosis of Paratuberculosis in Histopathological Images Based on
Explainable Artificial Intelligence and Deep Learning [0.0]
本研究では,Deep Learningアルゴリズムを用いて新しいオリジナルデータセットを探索し,勾配重み付きクラスアクティベーションマッピング(Grad-CAM)を用いて出力を可視化する。
意思決定プロセスと説明文の両方を検証し,出力の精度を検証した。
この研究結果は、病理学者が傍結核の診断に大いに役立っている。
論文 参考訳(メタデータ) (2022-08-02T18:05:26Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Deep Algorithm Unrolling for Biomedical Imaging [99.73317152134028]
本章では,アルゴリズムのアンロールによるバイオメディカル応用とブレークスルーについて概説する。
我々はアルゴリズムのアンローリングの起源を辿り、反復アルゴリズムをディープネットワークにアンローリングする方法に関する包括的なチュートリアルを提供する。
オープンな課題を議論し、今後の研究方向性を提案することで、この章を締めくくります。
論文 参考訳(メタデータ) (2021-08-15T01:06:26Z) - Explainable AI For COVID-19 CT Classifiers: An Initial Comparison Study [3.4031539425106683]
説明可能なAI(XAI)は、AIとディープラーニングのためのブラックボックスのアンロックの鍵です。
胸部ctは、covid-19に関連する肺疾患の診断および治療管理に有用なツールである。
本研究の目的は、比較調査による新型コロナウイルス分類モデルのためのXAI戦略の提案と開発である。
論文 参考訳(メタデータ) (2021-04-25T23:39:14Z) - Opportunities and Challenges in Explainable Artificial Intelligence
(XAI): A Survey [2.7086321720578623]
深層ニューラルネットワークのブラックボックスの性質は、ミッションクリティカルなアプリケーションでの利用に挑戦する。
XAIは、AI決定に関する高品質な解釈可能、直感的、人間に理解可能な説明を生成するためのツール、テクニック、アルゴリズムのセットを推進している。
論文 参考訳(メタデータ) (2020-06-16T02:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。