論文の概要: The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies
- arxiv url: http://arxiv.org/abs/2212.08104v1
- Date: Thu, 8 Dec 2022 23:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 03:01:52.166529
- Title: The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies
- Title(参考訳): 薬物発見におけるAIの役割 : 挑戦,機会,戦略
- Authors: Alexandre Blanco-Gonzalez, Alfonso Cabezon, Alejandro Seco-Gonzalez,
Daniel Conde-Torres, Paula Antelo-Riveiro, Angel Pineiro, Rebeca
Garcia-Fandino
- Abstract要約: この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
- 参考スコア(独自算出の注目度): 97.5153823429076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) has the potential to revolutionize the drug
discovery process, offering improved efficiency, accuracy, and speed. However,
the successful application of AI is dependent on the availability of
high-quality data, the addressing of ethical concerns, and the recognition of
the limitations of AI-based approaches. In this article, the benefits,
challenges and drawbacks of AI in this field are reviewed, and possible
strategies and approaches for overcoming the present obstacles are proposed.
The use of data augmentation, explainable AI, and the integration of AI with
traditional experimental methods, as well as the potential advantages of AI in
pharmaceutical research are also discussed. Overall, this review highlights the
potential of AI in drug discovery and provides insights into the challenges and
opportunities for realizing its potential in this field.
Note from the human-authors: This article was created to test the ability of
ChatGPT, a chatbot based on the GPT-3.5 language model, to assist human authors
in writing review articles. The text generated by the AI following our
instructions (see Supporting Information) was used as a starting point, and its
ability to automatically generate content was evaluated. After conducting a
thorough review, human authors practically rewrote the manuscript, striving to
maintain a balance between the original proposal and scientific criteria. The
advantages and limitations of using AI for this purpose are discussed in the
last section.
- Abstract(参考訳): 人工知能(AI)は、薬物発見プロセスに革命をもたらす可能性があり、効率、正確性、スピードを向上させる。
しかし、AIの成功する応用は、高品質なデータの可用性、倫理的懸念への対処、AIベースのアプローチの限界の認識に依存している。
本稿では、この分野におけるAIのメリット、課題、欠点を概観し、現在の障害を克服するための戦略とアプローチを提案する。
データ強化、説明可能なAIの使用、従来の実験手法とAIの統合、および医薬品研究におけるAIの潜在的な利点についても論じている。
全体として、このレビューは、薬物発見におけるAIの可能性を強調し、この分野におけるAIの可能性を実現するための課題と機会についての洞察を提供する。
この記事は、GPT-3.5言語モデルに基づくチャットボットChatGPTの能力をテストするために作成されました。
我々の指示に従ってAIが生成したテキスト(支援情報を参照)が出発点として使われ、コンテンツを自動的に生成する能力が評価された。
徹底的なレビューを行った後、人間の著者は原稿を実質的に書き直し、原案と科学的基準のバランスを保とうとした。
この目的のためにAIを使うことの利点と限界は、前節で述べられている。
関連論文リスト
- Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
論文 参考訳(メタデータ) (2024-03-14T15:58:13Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - AI and Non AI Assessments for Dementia [11.5631890541199]
人工知能領域の最近の進歩は、様々な種類のAIによる認知症評価の開発につながっている。
本論文は,認知症認知のための既存の解決策を臨床医に説明するための文献のギャップを埋めるものである。
認知症に関するAIおよび非AIアセスメントに関する論文のレビューに続いて、AIと医療コミュニティの両方で、さまざまな認知症アセスメントに関する貴重な情報を提供する。
論文 参考訳(メタデータ) (2023-06-30T03:28:47Z) - HiTZ@Antidote: Argumentation-driven Explainable Artificial Intelligence
for Digital Medicine [7.089952396422835]
AntiDOTEは、ディープラーニングプロセスの低レベル特性と人間の議論能力に適した高レベルスキームが組み合わされる、説明可能なAIという統合的なビジョンを育む。
プロジェクトの最初の成果として、Antidote CasiMedicosデータセットを公開し、一般に説明可能なAIの研究、特に医療分野における議論を促進する。
論文 参考訳(メタデータ) (2023-06-09T16:50:02Z) - Why we do need Explainable AI for Healthcare [0.0]
我々は、Explainable AI研究プログラムが人間と機械の相互作用の中心であると主張している。
有効な懸念にもかかわらず、私たちはExplainable AI研究プログラムが人間と機械の相互作用の中心であると主張している。
論文 参考訳(メタデータ) (2022-06-30T15:35:50Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。