論文の概要: Supervised Hypergraph Reconstruction
- arxiv url: http://arxiv.org/abs/2211.13343v1
- Date: Wed, 23 Nov 2022 23:15:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 16:00:13.103185
- Title: Supervised Hypergraph Reconstruction
- Title(参考訳): ハイパーグラフ再構成
- Authors: Yanbang Wang, Jon Kleinberg
- Abstract要約: 高次相互作用を含む多くの実世界のシステムは、ハイパーグラフによって符号化される。
データセットは、しばしば公開され、投影の形でのみ研究される。
教師付きハイパーグラフ再構成を提案する。
我々のアプローチは、ハードデータセット上での精度の桁違いに全てのベースラインを上回ります。
- 参考スコア(独自算出の注目度): 3.69853388955692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study an issue commonly seen with graph data analysis: many real-world
complex systems involving high-order interactions are best encoded by
hypergraphs; however, their datasets often end up being published or studied
only in the form of their projections (with dyadic edges). To understand this
issue, we first establish a theoretical framework to characterize this issue's
implications and worst-case scenarios. The analysis motivates our formulation
of the new task, supervised hypergraph reconstruction: reconstructing a
real-world hypergraph from its projected graph, with the help of some existing
knowledge of the application domain.
To reconstruct hypergraph data, we start by analyzing hyperedge distributions
in the projection, based on which we create a framework containing two modules:
(1) to handle the enormous search space of potential hyperedges, we design a
sampling strategy with efficacy guarantees that significantly narrows the space
to a smaller set of candidates; (2) to identify hyperedges from the candidates,
we further design a hyperedge classifier in two well-working variants that
capture structural features in the projection. Extensive experiments validate
our claims, approach, and extensions. Remarkably, our approach outperforms all
baselines by an order of magnitude in accuracy on hard datasets. Our code and
data can be downloaded from bit.ly/SHyRe.
- Abstract(参考訳): 高次相互作用を含む多くの実世界の複雑なシステムは、ハイパーグラフによって最もよく符号化されるが、それらのデータセットは、投射(dyadic edges)の形でのみ公開または研究されることが多い。
この問題を理解するために,我々はまず,この問題の意味と最悪のシナリオを特徴付ける理論的枠組みを確立する。
分析は、アプリケーションドメインに関する既存の知識の助けを借りて、実世界のハイパーグラフを投影されたグラフから再構築するハイパーグラフ再構築を監督する、新しいタスクの定式化を動機付ける。
To reconstruct hypergraph data, we start by analyzing hyperedge distributions in the projection, based on which we create a framework containing two modules: (1) to handle the enormous search space of potential hyperedges, we design a sampling strategy with efficacy guarantees that significantly narrows the space to a smaller set of candidates; (2) to identify hyperedges from the candidates, we further design a hyperedge classifier in two well-working variants that capture structural features in the projection.
広範な実験は私たちの主張、アプローチ、拡張を検証する。
注目すべきは、ハードデータセットに対する精度の桁違いの精度で、我々のアプローチはすべてのベースラインを上回ります。
私たちのコードとデータはbit.ly/SHyReからダウンロードできます。
関連論文リスト
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
本稿では,非教師付き手法で遅延ハイパーグラフ構造を推論するモデルであるハイパーグラフ推論ネットワーク(SPHINX)を用いた構造予測を提案する。
k-サブセットサンプリングの最近の進歩は、離散ハイパーグラフ構造を生成するのに適したツールであることを示す。
結果として得られるモデルは、現代のハイパーグラフニューラルネットワークに必要な高次構造を生成することができる。
論文 参考訳(メタデータ) (2024-10-04T07:49:57Z) - From Graphs to Hypergraphs: Hypergraph Projection and its Remediation [2.0590577326314787]
実世界の相互接続システムを表現するために,ハイパーグラフの代わりにグラフを使用する場合のモデリング選択の意味について検討する。
我々は,ハイパーエッジ分布の重要な統計量に基づく学習に基づくハイパーグラフ再構成手法を開発した。
論文 参考訳(メタデータ) (2024-01-16T17:31:54Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Hypergraph Neural Networks through the Lens of Message Passing: A Common
Perspective to Homophily and Architecture Design [7.410655263764799]
メッセージ・パッシング・スキームに基づく高階ネットワークにおけるホモフィリーの新たな概念化を提案する。
我々は、HNN内の高次構造を処理するための自然で、ほとんど探索されていない戦略について検討する。
論文 参考訳(メタデータ) (2023-10-11T17:35:20Z) - Enhancing Hyperedge Prediction with Context-Aware Self-Supervised
Learning [64.46188414653204]
我々は新しいハイパーエッジ予測フレームワーク(CASH)を提案する。
CASHは、コンテキスト認識ノードアグリゲーションを用いて、(C1)ハイパーエッジの各ノード間の複雑な関係をキャプチャし、(2)ハイパーエッジ予測のコンテキストにおける自己教師付きコントラスト学習を行い、(C2)ハイパーグラフ表現を強化する。
6つの実世界のハイパーグラフの実験により、CASHはハイパーエッジ予測の精度で競合する全ての手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-11T20:06:00Z) - Hypergraph Structure Inference From Data Under Smoothness Prior [46.568839316694515]
本稿では,ラベル付きデータを監視対象とせずに,潜在的なハイパーエッジの確率を推定する手法を提案する。
本稿では,この手法を用いてハイパーグラフ構造とノード特徴の関係を確率論的モデリングにより導出する。
本手法は,既存のハイパーグラフ構造推定法よりも効率的にデータから有意義なハイパーグラフ構造を学習できることを示す。
論文 参考訳(メタデータ) (2023-08-27T18:28:58Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
我々は、ハイパーグラフニューラルネットワークの一般化性を改善するために、画像/グラフからの対照的な学習アプローチ(ハイパーGCLと呼ぶ)を適用する。
我々は、高次関係を符号化したハイパーエッジを増大させる2つのスキームを作成し、グラフ構造化データから3つの拡張戦略を採用する。
拡張ビューを生成するためのハイパーグラフ生成モデルを提案し、次に、ハイパーグラフ拡張とモデルパラメータを協調的に学習するエンド・ツー・エンドの微分可能なパイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-07T20:12:20Z) - Finding Bipartite Components in Hypergraphs [9.759415650727892]
本稿では,ハイパーグラフにおける新しい熱拡散過程について検討し,このプロセスを用いて,ハイパーグラフ内の約2部成分を探索するアルゴリズムを設計する。
我々の新しいアルゴリズムは、幅広いハイパーグラフにまたがって、従来の最先端のアルゴリズムよりも一貫して、はるかに優れています。
論文 参考訳(メタデータ) (2022-05-05T16:46:31Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - Learning Multi-Granular Hypergraphs for Video-Based Person
Re-Identification [110.52328716130022]
ビデオベースの人物識別(re-ID)はコンピュータビジョンにおいて重要な研究課題である。
MGH(Multi-Granular Hypergraph)という新しいグラフベースのフレームワークを提案する。
MARSの90.0%のトップ-1精度はMGHを用いて達成され、最先端のスキームよりも優れていた。
論文 参考訳(メタデータ) (2021-04-30T11:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。