Lightweight Event-based Optical Flow Estimation via Iterative Deblurring
- URL: http://arxiv.org/abs/2211.13726v4
- Date: Sun, 5 May 2024 08:17:30 GMT
- Title: Lightweight Event-based Optical Flow Estimation via Iterative Deblurring
- Authors: Yilun Wu, Federico Paredes-Vallés, Guido C. H. E. de Croon,
- Abstract summary: We introduce IDNet, a lightweight yet high-performing event-based optical flow network directly estimating flow from event traces without using correlation volumes.
Our top-performing ID model sets a new state of art on DSEC benchmark.
Our base ID model is competitive with prior arts while using 80% fewer parameters, consuming 20x less memory footprint and running 40% faster on the NVidia Jetson Xavier NX.
- Score: 22.949700247611695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by frame-based methods, state-of-the-art event-based optical flow networks rely on the explicit construction of correlation volumes, which are expensive to compute and store, rendering them unsuitable for robotic applications with limited compute and energy budget. Moreover, correlation volumes scale poorly with resolution, prohibiting them from estimating high-resolution flow. We observe that the spatiotemporally continuous traces of events provide a natural search direction for seeking pixel correspondences, obviating the need to rely on gradients of explicit correlation volumes as such search directions. We introduce IDNet (Iterative Deblurring Network), a lightweight yet high-performing event-based optical flow network directly estimating flow from event traces without using correlation volumes. We further propose two iterative update schemes: "ID" which iterates over the same batch of events, and "TID" which iterates over time with streaming events in an online fashion. Our top-performing ID model sets a new state of the art on DSEC benchmark. Meanwhile, the base ID model is competitive with prior arts while using 80% fewer parameters, consuming 20x less memory footprint and running 40% faster on the NVidia Jetson Xavier NX. Furthermore, the TID model is even more efficient offering an additional 5x faster inference speed and 8 ms ultra-low latency at the cost of only a 9% performance drop, making it the only model among current literature capable of real-time operation while maintaining decent performance.
Related papers
- LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - DIFT: Dynamic Iterative Field Transforms for Memory Efficient Optical
Flow [44.57023882737517]
We introduce a lightweight low-latency and memory-efficient model for optical flow estimation.
DIFT is feasible for edge applications such as mobile, XR, micro UAVs, robotics and cameras.
We demonstrate first real-time cost-volume-based optical flow DL architecture on Snapdragon 8 Gen 1 HTP efficient mobile AI accelerator.
arXiv Detail & Related papers (2023-06-09T06:10:59Z) - Taming Contrast Maximization for Learning Sequential, Low-latency,
Event-based Optical Flow [18.335337530059867]
Event cameras have gained significant traction since they open up new avenues for low-latency and low-power solutions to complex computer vision problems.
To unlock these solutions, it is necessary to develop algorithms that can leverage the unique nature of event data.
In this work, we propose a novel self-supervised learning pipeline for the estimation of event-based optical flow.
arXiv Detail & Related papers (2023-03-09T12:37:33Z) - Pushing the Limits of Asynchronous Graph-based Object Detection with
Event Cameras [62.70541164894224]
We introduce several architecture choices which allow us to scale the depth and complexity of such models while maintaining low computation.
Our method runs 3.7 times faster than a dense graph neural network, taking only 8.4 ms per forward pass.
arXiv Detail & Related papers (2022-11-22T15:14:20Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
Event-based Graph Neural Networks generalize standard GNNs to process events as "evolving"-temporal graphs.
AEGNNs are easily trained on synchronous inputs and can be converted to efficient, "asynchronous" networks at test time.
arXiv Detail & Related papers (2022-03-31T16:21:12Z) - Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume
Excitation [65.83008812026635]
We construct Guided Cost volume Excitation (GCE) and show that simple channel excitation of cost volume guided by image can improve performance considerably.
We present an end-to-end network that we call Correlate-and-Excite (CoEx)
arXiv Detail & Related papers (2021-08-12T14:32:26Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - Reinforcement Learning with Latent Flow [78.74671595139613]
Flow of Latents for Reinforcement Learning (Flare) is a network architecture for RL that explicitly encodes temporal information through latent vector differences.
We show that Flare recovers optimal performance in state-based RL without explicit access to the state velocity.
We also show that Flare achieves state-of-the-art performance on pixel-based challenging continuous control tasks within the DeepMind control benchmark suite.
arXiv Detail & Related papers (2021-01-06T03:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.