論文の概要: Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing
- arxiv url: http://arxiv.org/abs/2211.13778v1
- Date: Thu, 24 Nov 2022 19:48:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 18:06:03.106061
- Title: Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing
- Title(参考訳): エッジコンピューティングにおける分散CNN推論高速化の設計と試作
- Authors: hongtian Dong, Nan Li, Alexandros Iosifidis, Qi Zhang
- Abstract要約: HALPはエッジコンピューティングにおけるエッジデバイス(ED)間のシームレスなコラボレーションを設計することで推論を加速する。
実験により、分散推論HALPはVGG-16に対して1.7倍の推論加速を達成することが示された。
分散推論HALPを用いたモデル選択は,サービスの信頼性を著しく向上させることができる。
- 参考スコア(独自算出の注目度): 85.74517957717363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For time-critical IoT applications using deep learning, inference
acceleration through distributed computing is a promising approach to meet a
stringent deadline. In this paper, we implement a working prototype of a new
distributed inference acceleration method HALP using three raspberry Pi 4. HALP
accelerates inference by designing a seamless collaboration among edge devices
(EDs) in Edge Computing. We maximize the parallelization between communication
and computation among the collaborative EDs by optimizing the task partitioning
ratio based on the segment-based partitioning. Experimental results show that
the distributed inference HALP achieves 1.7x inference acceleration for VGG-16.
Then, we combine distributed inference with conventional neural network model
compression by setting up different shrinking hyperparameters for MobileNet-V1.
In this way, we can further accelerate inference but at the cost of inference
accuracy loss. To strike a balance between latency and accuracy, we propose
dynamic model selection to select a model which provides the highest accuracy
within the latency constraint. It is shown that the model selection with
distributed inference HALP can significantly improve service reliability
compared to the conventional stand-alone computation.
- Abstract(参考訳): ディープラーニングを使用した時間クリティカルなIoTアプリケーションにとって、分散コンピューティングによる推論アクセラレーションは、厳しい期限を満たすための有望なアプローチである。
本稿では,3つのラズベリーPi 4を用いた新しい分散推論加速法HALPの動作プロトタイプを実装した。
HALPはエッジコンピューティングにおけるエッジデバイス(ED)間のシームレスなコラボレーションを設計することで推論を加速する。
セグメント分割に基づくタスク分割比を最適化することにより,協調ed間の通信と計算の並列化を最大化する。
実験の結果,分散推論HALPはVGG-16の1.7倍の推論加速を達成することがわかった。
次に,分散推論と従来のニューラルネットワークモデル圧縮を組み合わせることで,mobilenet-v1の縮小ハイパーパラメータを設定する。
このように、推論をさらに加速することができるが、推測精度損失のコストがかかる。
レイテンシと精度のバランスをとるために,遅延制約の中で最高の精度のモデルを選択するための動的モデル選択を提案する。
分散推論halpを用いたモデル選択により,従来のスタンドアロン計算に比べてサービス信頼性が著しく向上することが示された。
関連論文リスト
- AccEPT: An Acceleration Scheme for Speeding Up Edge Pipeline-parallel
Training [22.107070114339038]
本稿では,エッジ協調パイプライン並列トレーニングを高速化するアクセラレーションスキームであるAccEPTを提案する。
特に,異なるデバイスにおける各レイヤの遅延を正確に推定する軽量適応遅延予測器を提案する。
数値計算の結果,提案手法により,エッジパイプラインの並列学習を最大3倍高速化できることがわかった。
論文 参考訳(メタデータ) (2023-11-10T02:18:33Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Distributed Deep Learning Inference Acceleration using Seamless
Collaboration in Edge Computing [93.67044879636093]
本稿では,コラボレーティブエッジコンピューティングにおける分散畳み込みニューラルネットワーク(CNN)を用いた推論高速化について検討する。
本研究では,第2エッジサーバ(ES)上のサブタスクの重なり合うゾーンをホストES上で実行し,HALPと命名した新しいタスク協調方式を設計する。
実験結果から,GTX 1080TIとJETSON AGX Xavierでは,単一のタスクに対して1.7-2.0x,バッチ毎に1.7-1.8x,バッチ毎に1.7-1.8x,VGG-16では1.7-2.0xのCNN推論を高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-22T18:39:09Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
協調エッジコンピューティングネットワークにおける分散畳み込みニューラルネットワーク(CNN)を用いた推論高速化について検討する。
我々は,CNNモデルを複数の畳み込み層に分割するために,融合層並列化を用いた新しい協調エッジコンピューティングを提案する。
論文 参考訳(メタデータ) (2022-07-22T18:38:11Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。