論文の概要: Cooperative Inference for Real-Time 3D Human Pose Estimation in Multi-Device Edge Networks
- arxiv url: http://arxiv.org/abs/2504.03052v1
- Date: Thu, 03 Apr 2025 21:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:23.338504
- Title: Cooperative Inference for Real-Time 3D Human Pose Estimation in Multi-Device Edge Networks
- Title(参考訳): 複数デバイスエッジネットワークにおけるリアルタイム3次元人物位置推定のための協調推論
- Authors: Hyun-Ho Choi, Kangsoo Kim, Ki-Ho Lee, Kisong Lee,
- Abstract要約: 本研究では,モバイルエッジコンピューティングネットワークにおけるリアルタイムな3次元ポーズ推定のための新しい協調推論手法を提案する。
本稿では,提案手法の性能を,推定精度とエンドツーエンド遅延の観点から数値解析する。
- 参考スコア(独自算出の注目度): 9.37715274700407
- License:
- Abstract: Accurate and real-time three-dimensional (3D) pose estimation is challenging in resource-constrained and dynamic environments owing to its high computational complexity. To address this issue, this study proposes a novel cooperative inference method for real-time 3D human pose estimation in mobile edge computing (MEC) networks. In the proposed method, multiple end devices equipped with lightweight inference models employ dual confidence thresholds to filter ambiguous images. Only the filtered images are offloaded to an edge server with a more powerful inference model for re-evaluation, thereby improving the estimation accuracy under computational and communication constraints. We numerically analyze the performance of the proposed inference method in terms of the inference accuracy and end-to-end delay and formulate a joint optimization problem to derive the optimal confidence thresholds and transmission time for each device, with the objective of minimizing the mean per-joint position error (MPJPE) while satisfying the required end-to-end delay constraint. To solve this problem, we demonstrate that minimizing the MPJPE is equivalent to maximizing the sum of the inference accuracies for all devices, decompose the problem into manageable subproblems, and present a low-complexity optimization algorithm to obtain a near-optimal solution. The experimental results show that a trade-off exists between the MPJPE and end-to-end delay depending on the confidence thresholds. Furthermore, the results confirm that the proposed cooperative inference method achieves a significant reduction in the MPJPE through the optimal selection of confidence thresholds and transmission times, while consistently satisfying the end-to-end delay requirement in various MEC environments.
- Abstract(参考訳): 高精度でリアルタイムな3次元ポーズ推定(3D)は、その計算複雑性が高いため、資源制約や動的環境において困難である。
そこで本研究では,モバイルエッジコンピューティング(MEC)ネットワークにおけるリアルタイムな3次元ポーズ推定のための新しい協調推論手法を提案する。
提案手法では, 軽量推論モデルを備えた複数端末において, 二重信頼しきい値を用いて不明瞭な画像のフィルタリングを行う。
フィルタ画像のみを、より強力な再評価モデルでエッジサーバにオフロードすることで、計算および通信制約下での推定精度を向上させる。
本稿では,提案手法の性能を,推定精度とエンドツーエンド遅延の観点から数値解析し,必要なエンドツーエンド遅延制約を満足しつつ,平均結合位置誤差(MPJPE)を最小化することを目的として,各デバイスに対して最適な信頼度閾値と送信時間を導出する共同最適化問題を定式化する。
この問題を解決するために、MPJPEの最小化は、すべてのデバイスに対する推論精度の和を最大化し、問題を管理可能なサブプロブレムに分解することと、近似解を得るための低複雑さ最適化アルゴリズムを提案する。
実験結果から,MPJPEとエンド・ツー・エンドの遅延との間には,信頼しきい値によるトレードオフが存在することがわかった。
さらに,提案手法は,様々なMEC環境におけるエンドツーエンド遅延要件を一貫して満たしつつ,信頼度閾値と送信時間の最適選択により,MPJPEの大幅な削減を実現していることを確認した。
関連論文リスト
- Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
我々は,深層ニューラルネットワーク(DNN)の訓練において,クライアントが直面する計算能力の不足を軽減するためのモデル分割許容FL(SFL)フレームワークを提案する。
同期したグローバルアップデート設定では、グローバルトレーニングを完了するためのレイテンシは、クライアントがローカルトレーニングセッションを完了するための最大レイテンシによって決定される。
この混合整数非線形計画問題の解法として,AIモデルのカット層と他のパラメータの量的関係に適合する回帰法を提案し,TLMPを連続的な問題に変換する。
論文 参考訳(メタデータ) (2023-07-21T12:26:42Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via
Deep Reinforcement Learning [10.223526707269537]
計算集約型ディープニューラルネットワーク(DNN)推論サービスをサポートするためには,IoT(Industrial Internet of Things)デバイスとエッジネットワークのコラボレーションが不可欠だ。
本稿では,産業用IoTネットワークにおける協調推論問題について検討する。
論文 参考訳(メタデータ) (2022-12-31T05:53:17Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALPはエッジコンピューティングにおけるエッジデバイス(ED)間のシームレスなコラボレーションを設計することで推論を加速する。
実験により、分散推論HALPはVGG-16に対して1.7倍の推論加速を達成することが示された。
分散推論HALPを用いたモデル選択は,サービスの信頼性を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-11-24T19:48:30Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
デバイスエッジのコ推論は、リソース制約のあるモバイルデバイスとエッジサーバの間のディープニューラルネットワークを分割する。
オンデバイスモデルスパーシリティレベルと中間特徴圧縮比は、ワークロードと通信オーバーヘッドに直接的な影響を与える。
深部強化学習(DRL)に基づく新しい自動機械学習(AutoML)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-30T06:36:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
本稿では,高速ポーズ推定のためのLR表現を用いた費用対効果ネットワークの設計パラダイムであるFasterPoseを提案する。
我々は,FasterPoseのトレーニング挙動について検討し,収束を加速する新しい回帰クロスエントロピー(RCE)損失関数を定式化する。
従来のポーズ推定ネットワークと比較すると,FLOPの58%が減少し,精度が1.3%向上した。
論文 参考訳(メタデータ) (2021-07-07T13:39:08Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。