論文の概要: Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications
- arxiv url: http://arxiv.org/abs/2211.13787v2
- Date: Mon, 28 Nov 2022 15:48:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 14:16:20.107240
- Title: Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications
- Title(参考訳): 時間臨界IoTアプリケーションのためのロバストエッジインテリジェンスを実現するセマンティック通信
- Authors: Andrea Cavagna, Nan Li, Alexandros Iosifidis, Qi Zhang
- Abstract要約: 本稿では、時間クリティカルなIoTアプリケーションのためのセマンティック通信を用いて、堅牢なエッジインテリジェンスを設計することを目的とする。
本稿では,画像DCT係数が推定精度に与える影響を解析し,オフロードのためのチャネル非依存の有効性符号化を提案する。
- 参考スコア(独自算出の注目度): 87.05763097471487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to design robust Edge Intelligence using semantic
communication for time-critical IoT applications. We systematically analyze the
effect of image DCT coefficients on inference accuracy and propose the
channel-agnostic effectiveness encoding for offloading by transmitting the most
meaningful task data first. This scheme can well utilize all available
communication resource and strike a balance between transmission latency and
inference accuracy. Then, we design an effectiveness decoding by implementing a
novel image augmentation process for convolutional neural network (CNN)
training, through which an original CNN model is transformed into a Robust CNN
model. We use the proposed training method to generate Robust MobileNet-v2 and
Robust ResNet-50. The proposed Edge Intelligence framework consists of the
proposed effectiveness encoding and effectiveness decoding. The experimental
results show that the effectiveness decoding using the Robust CNN models
perform consistently better under various image distortions caused by channel
errors or limited communication resource. The proposed Edge Intelligence
framework using semantic communication significantly outperforms the
conventional approach under latency and data rate constraints, in particular,
under ultra stringent deadlines and low data rate.
- Abstract(参考訳): 本稿では、時間クリティカルなIoTアプリケーションのためのセマンティック通信を用いて、堅牢なエッジインテリジェンスを設計することを目的とする。
画像DCT係数が推定精度に与える影響を系統的に解析し、まず最も有意義なタスクデータを送信し、オフロードのためのチャネル非依存の有効性符号化を提案する。
このスキームは利用可能な全ての通信リソースをうまく活用し、伝送遅延と推論精度のバランスを取ることができる。
次に、畳み込みニューラルネットワーク(CNN)トレーニングのための新しい画像拡張プロセスを実装し、元のCNNモデルをロバストCNNモデルに変換することにより、有効デコーディングを設計する。
提案手法を用いて,Robust MobileNet-v2 と Robust ResNet-50 を生成する。
提案するエッジインテリジェンスフレームワークは,提案する有効性エンコーディングと有効性復号で構成される。
実験の結果,ロバストなcnnモデルを用いたデコードの有効性は,チャネルエラーや通信資源の制限による様々な画像歪みに対して一貫して向上することがわかった。
セマンティクス通信を用いたエッジインテリジェンスフレームワークは、レイテンシとデータレートの制約、特に超厳密な期限と低いデータレート下での従来のアプローチを大きく上回っている。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
部分オフロードにおける効果的な意味抽出と圧縮のための新しい意味圧縮手法であるオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
セマンティックエンコーダでは、CNNのチャネルアテンション機構に基づく特徴圧縮モジュールを導入し、最も情報性の高い特徴を選択して中間データを圧縮する。
セマンティックデコーダでは、受信した圧縮データから学習して中間データを再構築し、精度を向上させる軽量デコーダを設計する。
論文 参考訳(メタデータ) (2024-01-19T15:19:47Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
本稿では,デバイスエッジ共振器におけるCNN推論の計算負荷について検討する。
エンドデバイスにおける効率的な特徴抽出のための新しいオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
実験の結果、AECNNは中間データを約4%の精度で256倍圧縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-24T18:10:01Z) - Multi-Agent Feedback Enabled Neural Networks for Intelligent
Communications [28.723523146324002]
本稿では,新しいマルチエージェントフィードバック対応ニューラルネットワーク(MAFENN)フレームワークを提案する。
MAFENNフレームワークは理論的には3人プレイのFeedback Stackelbergゲームに定式化され、このゲームはFeedback Stackelberg平衡に収束することが証明される。
無線通信におけるMAFENNフレームワークの実現可能性を検証するため,マルチエージェントMAFENNベースの等化器(MAFENN-E)を開発した。
論文 参考訳(メタデータ) (2022-05-22T05:28:43Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
エッジインテリジェンスの最近の進歩は、スループットを高め、レイテンシを低減するために、エッジネットワーク上のCNN推論を必要とする。
柔軟性を得るためには、さまざまなモバイルデバイスに対する動的パラメータ割り当ては、事前に定義されたか、オンザフライで定義されたCNNアーキテクチャを実装する必要がある。
本稿では,スケーラブルで動的に分散したCNN推論を高速に設計するためのライブラリベースのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:33:42Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
ローエンドエッジ装置は、ローカルデータサンプルの抽出された特徴ベクトルを強力なエッジサーバに送信して処理する。
帯域幅が限られているため、データを低遅延推論のための情報的かつコンパクトな表現に符号化することが重要である。
特徴抽出,ソース符号化,チャネル符号化を協調的に最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-02-08T12:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。