論文の概要: GraphBPE: Molecular Graphs Meet Byte-Pair Encoding
- arxiv url: http://arxiv.org/abs/2407.19039v1
- Date: Fri, 26 Jul 2024 18:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 20:02:28.959356
- Title: GraphBPE: Molecular Graphs Meet Byte-Pair Encoding
- Title(参考訳): GraphBPE: Byte-Pairエンコーディングの分子グラフ
- Authors: Yuchen Shen, Barnabás Póczos,
- Abstract要約: 分子グラフを異なるサブ構造にトークン化し,モデルアーキテクチャに依存しない事前処理スケジュールとして機能するGraphBPEを提案する。
3つのグラフレベルの分類と3つのグラフレベルの回帰データセットに関する実験により、データ前処理によって分子グラフのモデルの性能が向上することを示した。
- 参考スコア(独自算出の注目度): 12.985482706851846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing attention to molecular machine learning, various innovations have been made in designing better models or proposing more comprehensive benchmarks. However, less is studied on the data preprocessing schedule for molecular graphs, where a different view of the molecular graph could potentially boost the model's performance. Inspired by the Byte-Pair Encoding (BPE) algorithm, a subword tokenization method popularly adopted in Natural Language Processing, we propose GraphBPE, which tokenizes a molecular graph into different substructures and acts as a preprocessing schedule independent of the model architectures. Our experiments on 3 graph-level classification and 3 graph-level regression datasets show that data preprocessing could boost the performance of models for molecular graphs, and GraphBPE is effective for small classification datasets and it performs on par with other tokenization methods across different model architectures.
- Abstract(参考訳): 分子機械学習への注目が高まり、より良いモデルの設計やより包括的なベンチマークの提案に様々な革新が加えられた。
しかし、分子グラフの異なるビューがモデルの性能を高める可能性があるため、分子グラフのデータ前処理スケジュールについてはあまり研究されていない。
自然言語処理で広く採用されているサブワードトークン化手法であるByte-Pair Encoding(BPE)アルゴリズムに着想を得て,分子グラフを異なるサブ構造にトークン化し,モデルアーキテクチャに依存しない事前処理スケジュールとして機能するGraphBPEを提案する。
3つのグラフレベルの分類と3つのグラフレベルの回帰データセットに関する実験により、データ前処理によって分子グラフのモデルの性能が向上し、GraphBPEは小さな分類データセットに有効であり、異なるモデルアーキテクチャにおける他のトークン化手法と同等に機能することが示された。
関連論文リスト
- TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
トポロジカル進化速度 (TopER) は、トポロジカルデータ解析に基づく低次元埋め込み手法である。
TopERはグラフ部分構造の進化率を計算することによって、重要な位相的アプローチである永続化ホモロジーを単純化する。
我々のモデルは、分類、クラスタリング、可視化といったタスクにおいて、分子、生物学的、ソーシャルネットワークのデータセットにまたがる最先端の結果を達成したり、超えたりします。
論文 参考訳(メタデータ) (2024-10-02T17:31:33Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
分子グラフ生成のための離散グラフ構造(CDGS)に基づく条件拡散モデルを提案する。
具体的には、微分方程式(SDE)を用いて、グラフ構造と固有の特徴の両方に対して前方グラフ拡散過程を構築する。
本稿では,中間グラフ状態からグローバルコンテキストと局所ノードエッジ依存性を抽出する,特殊なハイブリッドグラフノイズ予測モデルを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:24:15Z) - Extreme Acceleration of Graph Neural Network-based Prediction Models for
Quantum Chemistry [7.592530794455257]
本稿では,分子特性予測のためのグラフニューラルネットワークのトレーニングをスケールアップするための,ハードウェアとソフトウェアの共同設計手法を提案する。
本稿では,分子グラフのバッチを固定サイズパックに結合して冗長計算やメモリを不要にするアルゴリズムを提案する。
このような共同設計手法により、分子特性予測モデルのトレーニング時間を数日から2時間未満に短縮できることを示す。
論文 参考訳(メタデータ) (2022-11-25T01:30:18Z) - Molecular Graph Representation Learning via Heterogeneous Motif Graph
Construction [19.64574177805823]
ヘテロジニアスなモチーフグラフを構築することによって,新しい分子グラフ表現学習法を提案する。
特に、モチーフノードと分子ノードを含む不均一モチーフグラフを構築する。
本モデルでは, エッジサンプリングを用いて, 計算資源を著しく減らし, 類似した性能が得られることを示す。
論文 参考訳(メタデータ) (2022-02-01T16:21:01Z) - Motif-based Graph Self-Supervised Learning forMolecular Property
Prediction [12.789013658551454]
グラフニューラルネットワーク(GNN)は、様々な分子生成および予測タスクにおいて顕著な成功を収めている。
既存のGNN用の自己教師付き事前トレーニングフレームワークのほとんどは、ノードレベルまたはグラフレベルのタスクのみに焦点を当てている。
GNNのための新しい自己教師型モチーフ生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T11:45:51Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。