論文の概要: FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction
- arxiv url: http://arxiv.org/abs/2211.13874v2
- Date: Fri, 24 Mar 2023 14:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 18:11:25.911660
- Title: FFHQ-UV: Normalized Facial UV-Texture Dataset for 3D Face Reconstruction
- Title(参考訳): FFHQ-UV:3次元顔再構成のための正常顔面UVテクスチャデータセット
- Authors: Haoran Bai, Di Kang, Haoxian Zhang, Jinshan Pan, Linchao Bao
- Abstract要約: このデータセットには、5万以上の高品質なテクスチャUVマップが含まれており、照度、中性表現、クリーンな顔領域がある。
我々のパイプラインは、StyleGANベースの顔画像編集アプローチの最近の進歩を活用している。
実験により,本手法は最先端手法よりも再現精度が向上することが示された。
- 参考スコア(独自算出の注目度): 46.3392612457273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a large-scale facial UV-texture dataset that contains over 50,000
high-quality texture UV-maps with even illuminations, neutral expressions, and
cleaned facial regions, which are desired characteristics for rendering
realistic 3D face models under different lighting conditions. The dataset is
derived from a large-scale face image dataset namely FFHQ, with the help of our
fully automatic and robust UV-texture production pipeline. Our pipeline
utilizes the recent advances in StyleGAN-based facial image editing approaches
to generate multi-view normalized face images from single-image inputs. An
elaborated UV-texture extraction, correction, and completion procedure is then
applied to produce high-quality UV-maps from the normalized face images.
Compared with existing UV-texture datasets, our dataset has more diverse and
higher-quality texture maps. We further train a GAN-based texture decoder as
the nonlinear texture basis for parametric fitting based 3D face
reconstruction. Experiments show that our method improves the reconstruction
accuracy over state-of-the-art approaches, and more importantly, produces
high-quality texture maps that are ready for realistic renderings. The dataset,
code, and pre-trained texture decoder are publicly available at
https://github.com/csbhr/FFHQ-UV.
- Abstract(参考訳): 本稿では,5万以上の高品質なテクスチャuvマップと,照度,中性表現,清浄された顔領域を含む大規模顔用uvテクスチャデータセットを提案する。
データセットはFFHQという大規模な顔画像データセットから派生したもので、完全に自動で堅牢なUVテクスチャ生産パイプラインの助けを借りています。
我々のパイプラインは、最近のStyleGANベースの顔画像編集手法を利用して、画像入力から多視点正規化顔画像を生成する。
次に、精巧なUVテクスチャ抽出、補正、完了手順を適用し、正規化顔画像から高品質なUVマップを生成する。
既存のuvテキストデータセットと比較して、データセットはより多様で高品質なテクスチャマップを持っています。
さらに,パラメトリックフィッティングに基づく3次元顔再構成のための非線形テクスチャベースとしてganベースのテクスチャデコーダを訓練する。
実験の結果,本手法は最先端の手法よりも再構成精度が向上し,さらに,現実的なレンダリングが可能な高品質なテクスチャマップが得られた。
データセット、コード、トレーニング済みテクスチャデコーダはhttps://github.com/csbhr/FFHQ-UVで公開されている。
関連論文リスト
- TEXGen: a Generative Diffusion Model for Mesh Textures [63.43159148394021]
我々は、UVテクスチャ空間自体における学習の根本的な問題に焦点を当てる。
本稿では,点クラウド上にアテンション層を持つUVマップ上の畳み込みをインターリーブするスケーラブルなネットワークアーキテクチャを提案する。
テキストプロンプトとシングルビュー画像によって導かれるUVテクスチャマップを生成する7億のパラメータ拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-11-22T05:22:11Z) - Texture Generation on 3D Meshes with Point-UV Diffusion [86.69672057856243]
本稿では, 粗い微細化パイプラインであるPoint-UV拡散モデルとUVマッピングを併用し, 高品質なテクスチャイメージをUV空間で生成する。
本手法は,任意の属のメッシュを処理し,多種多様で,幾何に適合し,高忠実度なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-21T06:20:54Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
AUV-Netは,3次元表面を2次元に整列したUV空間に埋め込むことを学習する。
結果として、テクスチャはオブジェクト間で整列し、画像の生成モデルによって容易に合成できる。
学習されたUVマッピングとアライメントテクスチャ表現は、テクスチャ転送、テクスチャ合成、テクスチャ化された単一ビュー3D再構成など、さまざまなアプリケーションを可能にする。
論文 参考訳(メタデータ) (2022-04-06T21:39:24Z) - Weakly-Supervised Photo-realistic Texture Generation for 3D Face
Reconstruction [48.952656891182826]
高忠実度3D顔テクスチャ生成についてはまだ研究されていない。
モデルはUVサンプリング器とUVジェネレータで構成される。
トレーニングは、3DMMテクスチャと入力顔テクスチャでブレンドされた擬似地上真実に基づいている。
論文 参考訳(メタデータ) (2021-06-14T12:34:35Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
ワンショット3D顔テクスチャ補完のための教師なしアプローチを提案する。
提案手法では,2次元フェースジェネレータで回転画像を再構成することにより,入力画像を3次元で回転させ,見えない領域を埋め込む。
完成したテクスチャーをジェネレーターに投影することで、ターゲットイメージを先取りします。
論文 参考訳(メタデータ) (2020-12-30T23:53:26Z) - StyleUV: Diverse and High-fidelity UV Map Generative Model [24.982824840625216]
本稿では,高品質なUVマップを訓練に必要とせず,多種多様なリアルなUVマップを生成することを学習する新しいUVマップ生成モデルを提案する。
定量的および定性的な評価は,提案したテクスチャモデルが既存手法よりも多様性が高く,忠実度の高いテクスチャを生成することを示すものである。
論文 参考訳(メタデータ) (2020-11-25T17:19:44Z) - Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images
Using Graph Convolutional Networks [32.859340851346786]
本研究では,一眼レフ画像から高忠実度テクスチャで3次元顔形状を再構成する手法を提案する。
提案手法は, 質的, 定量的な比較において, 高品質な結果を生成し, 最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-03-12T08:06:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。