論文の概要: Mutual Guidance and Residual Integration for Image Enhancement
- arxiv url: http://arxiv.org/abs/2211.13919v1
- Date: Fri, 25 Nov 2022 06:12:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 17:05:07.448880
- Title: Mutual Guidance and Residual Integration for Image Enhancement
- Title(参考訳): 画像強調のための相互誘導と残像統合
- Authors: Kun Zhou, KenKun Liu, Wenbo Li, Xiaoguang Han, Jiangbo Lu
- Abstract要約: 本稿では,効果的な双方向グローバルローカル情報交換を行うための相互誘導ネットワーク(MGN)を提案する。
本設計では,グローバルな関係のモデリングに重点を置き,一方がローカルな情報処理にコミットする2ブランチのフレームワークを採用する。
その結果、グローバルとローカルの両方のブランチは、相互情報集約のメリットを享受できる。
- 参考スコア(独自算出の注目度): 43.282397174228116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous studies show the necessity of global and local adjustment for image
enhancement. However, existing convolutional neural networks (CNNs) and
transformer-based models face great challenges in balancing the computational
efficiency and effectiveness of global-local information usage. Especially,
existing methods typically adopt the global-to-local fusion mode, ignoring the
importance of bidirectional interactions. To address those issues, we propose a
novel mutual guidance network (MGN) to perform effective bidirectional
global-local information exchange while keeping a compact architecture. In our
design, we adopt a two-branch framework where one branch focuses more on
modeling global relations while the other is committed to processing local
information. Then, we develop an efficient attention-based mutual guidance
approach throughout our framework for bidirectional global-local interactions.
As a result, both the global and local branches can enjoy the merits of mutual
information aggregation. Besides, to further refine the results produced by our
MGN, we propose a novel residual integration scheme following the
divide-and-conquer philosophy. The extensive experiments demonstrate the
effectiveness of our proposed method, which achieves state-of-the-art
performance on several public image enhancement benchmarks.
- Abstract(参考訳): 従来の研究は、画像強調のためのグローバルおよびローカル調整の必要性を示している。
しかし、既存の畳み込みニューラルネットワーク(cnns)とトランスフォーマーモデルでは、計算効率とグローバルローカル情報利用の有効性のバランスをとる上で大きな課題がある。
特に、既存の方法は通常、双方向相互作用の重要性を無視して、グローバル-ローカル融合モードを採用する。
これらの課題に対処するため,我々は,コンパクトなアーキテクチャを維持しつつ,効果的な双方向グローバルな情報交換を行うための相互誘導ネットワーク(MGN)を提案する。
本設計では,グローバルな関係のモデリングに重点を置き,一方がローカルな情報処理にコミットする2ブランチのフレームワークを採用する。
そこで我々は,双方向のグローバル・ローカル・インタラクションのための効果的な注意に基づく相互指導手法を開発した。
その結果、グローバルとローカルの両方のブランチは、相互情報集約のメリットを享受できる。
さらに,mgnの結果をさらに精錬するために,分断・解法に従う新たな残差積分スキームを提案する。
提案手法の有効性を実証し,複数の公開画像強調ベンチマークにおける最先端性能を実現する。
関連論文リスト
- Neighborhood and Global Perturbations Supported SAM in Federated Learning: From Local Tweaks To Global Awareness [29.679323144520037]
フェデレートラーニング(FL)は、中央サーバのオーケストレーションの下で調整して、プライバシ保護モデルを構築することができる。
本稿では,最小限のアップリンク通信オーバヘッドを維持しつつ,一般化目標を考慮した新しいFLアルゴリズムであるFedTOGAを提案する。
論文 参考訳(メタデータ) (2024-08-26T09:42:18Z) - BCLNet: Bilateral Consensus Learning for Two-View Correspondence Pruning [26.400567961735234]
対応プルーニングは、2つの関連する画像間の信頼性の高い対応を確立することを目的としている。
既存のアプローチでは、ローカルとグローバルのコンテキストを扱うために、プログレッシブな戦略を採用することが多い。
本稿では,2視点対応型プルーニングタスクにおいて,双方向のコンセンサスを取得するための並列コンテキスト学習戦略を提案する。
論文 参考訳(メタデータ) (2024-01-07T11:38:15Z) - Multi-Level Branched Regularization for Federated Learning [46.771459325434535]
本稿では,各局所モデルにおける複数の補助的分岐を,複数の異なるレベルで局所的および大域的ワークをグラフトすることで構築する,新しいアーキテクチャ正規化手法を提案する。
従来の手法に比べて精度と効率の点で顕著な性能向上を示す。
論文 参考訳(メタデータ) (2022-07-14T13:59:26Z) - DALG: Deep Attentive Local and Global Modeling for Image Retrieval [26.773211032906854]
本稿では,Transformerの成功に動機づけられた頑健な表現学習のための,完全な注意に基づくフレームワークを提案する。
グローバルな特徴抽出にTransformerを適用することに加えて、ウィンドウベースのマルチヘッドアテンションと空間アテンションからなるローカルブランチを考案する。
DALG(Deep Attentive Local and Global Modeling framework)では、大規模な実験結果により、効率が大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2022-07-01T09:32:15Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
Co-Salient Object Detection (CoSOD)の目標は、2つ以上の関連する画像を含むクエリグループに一般的に現れる有能なオブジェクトを見つけることである。
本稿では,グローバル対応モデリング(GCM)とローカル対応モデリング(LCM)を含む,グローバル・ローカル協調学習アーキテクチャを提案する。
提案したGLNetは3つの一般的なCoSODベンチマークデータセットに基づいて評価され、我々のモデルが小さなデータセット(約3k画像)でトレーニングされた場合、一部の大規模データセット(約8k-200k画像)でトレーニングされた11の最先端の競合製品(約8k-200k画像)を上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-19T14:32:41Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
本稿では,近隣相互作用に基づくCTR予測を提案し,そのタスクを異種情報ネットワーク(HIN)設定に組み込む。
周辺地域の表現を高めるために,ノード間のトポロジカルな相互作用を4種類検討する。
本研究では,2つの実世界のデータセットに関する総合的な実験を行い,提案手法が最先端のCTRモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-01-25T12:44:23Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
エントロピー誘導強化部分畳み込みネットワーク(ERPCNet)を提案する。
ERPCNetは、人間のアノテーションのない意味的関連性と視覚的相関に基づいて、局所性を抽出し、集約する。
グローバルな協力的局所性を動的に発見するだけでなく、ポリシー勾配最適化のためにより高速に収束する。
論文 参考訳(メタデータ) (2021-11-03T11:13:13Z) - Cooperative Policy Learning with Pre-trained Heterogeneous Observation
Representations [51.8796674904734]
事前訓練された異種観察表現を用いた新たな協調学習フレームワークを提案する。
エンコーダ-デコーダに基づくグラフアテンションを用いて、複雑な相互作用と異種表現を学習する。
論文 参考訳(メタデータ) (2020-12-24T04:52:29Z) - Global Context Aware RCNN for Object Detection [1.1939762265857436]
我々はGCA (Global Context Aware) RCNNと呼ばれる新しいエンドツーエンドのトレーニング可能なフレームワークを提案する。
GCAフレームワークの中核となるコンポーネントは、グローバルな特徴ピラミッドとアテンション戦略の両方を特徴抽出と特徴改善に使用する、コンテキスト認識メカニズムである。
最後に,モデルの複雑さと計算負担をわずかに増加させる軽量バージョンを提案する。
論文 参考訳(メタデータ) (2020-12-04T14:56:46Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。