Federated Graph-based Sampling with Arbitrary Client Availability
- URL: http://arxiv.org/abs/2211.13975v1
- Date: Fri, 25 Nov 2022 09:38:20 GMT
- Title: Federated Graph-based Sampling with Arbitrary Client Availability
- Authors: Zheng Wang, Xiaoliang Fan, Jianzhong Qi, Haibing Jin, Peizhen Yang,
Siqi Shen, Cheng Wang
- Abstract summary: We propose a framework named Federated Graph-based Sampling (FedGS) to stabilize the global model update and mitigate the long-term bias given arbitrary client availability simultaneously.
Our experimental results confirm FedGS's advantage in both enabling a fair client-sampling scheme and improving the model performance under arbitrary client availability.
- Score: 34.95352685954059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While federated learning has shown strong results in optimizing a machine
learning model without direct access to the original data, its performance may
be hindered by intermittent client availability which slows down the
convergence and biases the final learned model. There are significant
challenges to achieve both stable and bias-free training under arbitrary client
availability. To address these challenges, we propose a framework named
Federated Graph-based Sampling (FedGS), to stabilize the global model update
and mitigate the long-term bias given arbitrary client availability
simultaneously. First, we model the data correlations of clients with a
Data-Distribution-Dependency Graph (3DG) that helps keep the sampled clients
data apart from each other, which is theoretically shown to improve the
approximation to the optimal model update. Second, constrained by the
far-distance in data distribution of the sampled clients, we further minimize
the variance of the numbers of times that the clients are sampled, to mitigate
long-term bias. To validate the effectiveness of FedGS, we conduct experiments
on three datasets under a comprehensive set of seven client availability modes.
Our experimental results confirm FedGS's advantage in both enabling a fair
client-sampling scheme and improving the model performance under arbitrary
client availability. Our code is available at
\url{https://github.com/WwZzz/FedGS}.
Related papers
- Federated Learning Clients Clustering with Adaptation to Data Drifts [27.974937897248132]
Federated Learning (FL) enables deep learning model training across edge devices.
In this paper, we introduce Fielding, a clustered FL framework that handles data drifts promptly with low overheads.
Our evaluations show that Fielding improves model final accuracy by 1.9%-5.9% and reaches target accuracies 1.16x-2.61x faster.
arXiv Detail & Related papers (2024-11-03T14:13:38Z) - Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients [8.773068878015856]
Federated learning (FL) is an appealing paradigm that allows a group of machines (a.k.a. clients) to learn collectively while keeping their data local.
We consider an FL setting where some clients can be adversarial, and we derive conditions under which full collaboration fails.
arXiv Detail & Related papers (2024-09-30T14:31:19Z) - LEFL: Low Entropy Client Sampling in Federated Learning [6.436397118145477]
Federated learning (FL) is a machine learning paradigm where multiple clients collaborate to optimize a single global model using their private data.
We propose LEFL, an alternative sampling strategy by performing a one-time clustering of clients based on their model's learned high-level features.
We show of sampled clients selected with this approach yield a low relative entropy with respect to the global data distribution.
arXiv Detail & Related papers (2023-12-29T01:44:20Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning (FL) is a distributed training paradigm that enables clients scattered across the world to cooperatively learn a global model without divulging confidential data.
FL faces a significant challenge in the form of heterogeneous data distributions among clients, which leads to a reduction in performance and robustness.
We introduce foundation model distillation to assist in the federated training of lightweight client models and increase their performance under heterogeneous data settings while keeping inference costs low.
arXiv Detail & Related papers (2023-11-14T19:10:56Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
We propose a novel learning rate adaptation mechanism to adjust the server learning rate for the aggregated gradient in each round.
We make theoretical deductions to find a meaningful and robust indicator that is positively related to the optimal server learning rate.
arXiv Detail & Related papers (2023-01-25T03:52:45Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.