Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning
- URL: http://arxiv.org/abs/2311.08479v1
- Date: Tue, 14 Nov 2023 19:10:56 GMT
- Title: Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning
- Authors: Xidong Wu, Wan-Yi Lin, Devin Willmott, Filipe Condessa, Yufei Huang,
Zhenzhen Li and Madan Ravi Ganesh
- Abstract summary: Federated Learning (FL) is a distributed training paradigm that enables clients scattered across the world to cooperatively learn a global model without divulging confidential data.
FL faces a significant challenge in the form of heterogeneous data distributions among clients, which leads to a reduction in performance and robustness.
We introduce foundation model distillation to assist in the federated training of lightweight client models and increase their performance under heterogeneous data settings while keeping inference costs low.
- Score: 16.684749528240587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a distributed training paradigm that enables
clients scattered across the world to cooperatively learn a global model
without divulging confidential data. However, FL faces a significant challenge
in the form of heterogeneous data distributions among clients, which leads to a
reduction in performance and robustness. A recent approach to mitigating the
impact of heterogeneous data distributions is through the use of foundation
models, which offer better performance at the cost of larger computational
overheads and slower inference speeds. We introduce foundation model
distillation to assist in the federated training of lightweight client models
and increase their performance under heterogeneous data settings while keeping
inference costs low. Our results show improvement in the global model
performance on a balanced testing set, which contains rarely observed samples,
even under extreme non-IID client data distributions. We conduct a thorough
evaluation of our framework with different foundation model backbones on
CIFAR10, with varying degrees of heterogeneous data distributions ranging from
class-specific data partitions across clients to dirichlet data sampling,
parameterized by values between 0.01 and 1.0.
Related papers
- Federated Learning Clients Clustering with Adaptation to Data Drifts [27.974937897248132]
Federated Learning (FL) enables deep learning model training across edge devices.
In this paper, we introduce Fielding, a clustered FL framework that handles data drifts promptly with low overheads.
Our evaluations show that Fielding improves model final accuracy by 1.9%-5.9% and reaches target accuracies 1.16x-2.61x faster.
arXiv Detail & Related papers (2024-11-03T14:13:38Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
Federated Learning (FL) is a promising paradigm for decentralized and collaborative model training.
FL struggles with a significant performance reduction and poor convergence when confronted with Non-Independent and Identically Distributed (Non-IID) data distributions.
We introduce Gen-FedSD, a novel approach that harnesses the powerful capability of state-of-the-art text-to-image foundation models.
arXiv Detail & Related papers (2024-05-13T16:57:48Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Mitigating System Bias in Resource Constrained Asynchronous Federated
Learning Systems [2.8790600498444032]
We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments.
Our method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities.
arXiv Detail & Related papers (2024-01-24T10:51:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.