論文の概要: Spatial-Spectral Transformer for Hyperspectral Image Denoising
- arxiv url: http://arxiv.org/abs/2211.14090v1
- Date: Fri, 25 Nov 2022 13:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 18:14:59.607057
- Title: Spatial-Spectral Transformer for Hyperspectral Image Denoising
- Title(参考訳): ハイパースペクトル画像雑音化のための空間スペクトルトランス
- Authors: Miaoyu Li, Ying Fu, Yulun Zhang
- Abstract要約: ハイパースペクトル画像(HSI)は、その後のHSIアプリケーションにとって重要な前処理手順である。
既存の畳み込みに基づく手法は、HSIの非局所特性をモデル化する計算効率と能力のトレードオフに直面している。
この問題を軽減するための空間スペクトル変換器(SST)を提案する。
- 参考スコア(独自算出の注目度): 31.86587556847128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) denoising is a crucial preprocessing procedure for
the subsequent HSI applications. Unfortunately, though witnessing the
development of deep learning in HSI denoising area, existing convolution-based
methods face the trade-off between computational efficiency and capability to
model non-local characteristics of HSI. In this paper, we propose a
Spatial-Spectral Transformer (SST) to alleviate this problem. To fully explore
intrinsic similarity characteristics in both spatial dimension and spectral
dimension, we conduct non-local spatial self-attention and global spectral
self-attention with Transformer architecture. The window-based spatial
self-attention focuses on the spatial similarity beyond the neighboring region.
While, spectral self-attention exploits the long-range dependencies between
highly correlative bands. Experimental results show that our proposed method
outperforms the state-of-the-art HSI denoising methods in quantitative quality
and visual results.
- Abstract(参考訳): ハイパースペクトル画像(HSI)は、その後のHSIアプリケーションにとって重要な前処理手順である。
残念ながら、HSIのDenoising領域におけるディープラーニングの発展を目撃する一方で、既存の畳み込みに基づく手法は、HSIの非局所特性をモデル化する計算効率と能力のトレードオフに直面している。
本稿では,この問題を軽減するための空間スペクトル変換器(SST)を提案する。
空間次元とスペクトル次元の両方において内在的類似性特性を十分に探求するため,トランスフォーマーアーキテクチャを用いて非局所的空間自己アテンションと大域的スペクトル自己アテンションを行う。
ウィンドウベースの空間自己注意は、隣接する領域を超えた空間的類似性に焦点を当てる。
一方、スペクトル自己アテンションは、高度に相関するバンド間の長距離依存性を利用する。
実験の結果,提案手法は定量的品質および視覚的結果において最先端のHSI復調法よりも優れていた。
関連論文リスト
- Hybrid Spatial-spectral Neural Network for Hyperspectral Image Denoising [10.588958070064916]
本稿では,CNNとTransformer特性にインスパイアされたハイブリッド空間スペクトル復調ネットワークを提案する。
提案手法は空間的およびスペクトル的再構成における最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-06-13T03:27:01Z) - HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising [11.022546457796949]
本研究では,HSIにおける空間スペクトル依存性を効果的に捉えるために,線形複雑性を利用したHSIDMamba(HSDM)を提案する。
HSDMは複数のハイパースペクトル連続走査ブロックから構成され、BCSM(Bidirectional Continuous Scanning Mechanism)、スケール残留、スペクトル注意機構が組み込まれている。
BCSMは、前向きと後向きのスキャンをリンクし、SSMを介して8方向の情報を強化することにより、空間-スペクトル相互作用を強化する。
論文 参考訳(メタデータ) (2024-04-15T11:59:19Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
ハイパースペクトル画像の空間的およびスペクトル的相関をモデル化するスペクトル拡張矩形変換器を提案する。
前者に対しては、長方形自己アテンションを水平および垂直に利用し、空間領域における非局所的類似性を捉える。
後者のために,空間スペクトル立方体の大域的低ランク特性を抽出し,雑音を抑制するスペクトル拡張モジュールを設計する。
論文 参考訳(メタデータ) (2023-04-03T09:42:13Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
本研究では,HSI復調のためのロバストな主成分分析のための新しい非特異なアプローチを提案する。
我々は、ランクとスパースコンポーネントの両方に対する正確な近似を開発する。
シミュレーションと実HSIの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-01-08T11:48:46Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
ハイパースペクトル画像(HSI)再構成は、2次元計測から3次元空間スペクトル信号を復元することを目的としている。
スペクトル間相互作用のモデル化は、HSI再構成に有用である。
Mask-guided Spectral-wise Transformer (MST) は,HSI再構成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-15T16:59:48Z) - SSCAN: A Spatial-spectral Cross Attention Network for Hyperspectral
Image Denoising [12.873607414761093]
本稿では,グループ畳み込みとアテンションモジュールを組み合わせた新しいHSIデノベーションネットワークSSCANを提案する。
ハイパースペクトル画像における空間情報とスペクトル情報を有効利用するためのスペクトル空間アテンションブロック(SSAB)を提案する。
実験結果から,提案したSSCANは,最先端のHSI復調アルゴリズムよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-05-23T14:36:17Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。