論文の概要: Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising
- arxiv url: http://arxiv.org/abs/2403.10067v1
- Date: Fri, 15 Mar 2024 07:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:19:27.863501
- Title: Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising
- Title(参考訳): ハイパースペクトル画像復調のためのハイブリッド畳み込み・アテンションネットワーク
- Authors: Shuai Hu, Feng Gao, Xiaowei Zhou, Junyu Dong, Qian Du,
- Abstract要約: ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
- 参考スコア(独自算出の注目度): 54.110544509099526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data. However, simultaneously modeling global and local features is rarely explored to enhance HSI denoising. In this letter, we propose a hybrid convolution and attention network (HCANet), which leverages both the strengths of convolution neural networks (CNNs) and Transformers. To enhance the modeling of both global and local features, we have devised a convolution and attention fusion module aimed at capturing long-range dependencies and neighborhood spectral correlations. Furthermore, to improve multi-scale information aggregation, we design a multi-scale feed-forward network to enhance denoising performance by extracting features at different scales. Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet. The proposed model is effective in removing various types of complex noise. Our codes are available at \url{https://github.com/summitgao/HCANet}.
- Abstract(参考訳): ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
しかし,グローバルな特徴と局所的な特徴を同時にモデル化することで,HSIの認知度を高めることは稀である。
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマーの両方の長所を利用するハイブリッド畳み込み・アテンションネットワーク(HCANet)を提案する。
グローバルな特徴と局所的な特徴のモデリングを強化するため,長距離依存と近傍のスペクトル相関を捉えることを目的とした畳み込み・注意融合モジュールを考案した。
さらに、マルチスケール情報集約を改善するために、異なるスケールで特徴を抽出することでデノナイジング性能を向上させるために、マルチスケールフィードフォワードネットワークを設計する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示す。
提案手法は, 各種複合雑音の除去に有効である。
我々のコードは \url{https://github.com/summitgao/HCANet} で利用可能です。
関連論文リスト
- ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
相関スペクトルと空間情報を利用した自己変調畳み込みニューラルネットワークを提案する。
モデルの中心には新しいブロックがあり、隣り合うスペクトルデータに基づいて、ネットワークが適応的に特徴を変換することができる。
合成データと実データの両方の実験解析により,提案したSM-CNNは,他の最先端HSI復調法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-15T06:57:43Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Multi-scale Adaptive Fusion Network for Hyperspectral Image Denoising [35.491878332394265]
マルチスケール・アダプティブ・フュージョン・ネットワーク(MAFNet)を用いたHSI復調手法を提案する。
提案したMAFNetは、他の最先端技術よりも性能が向上している。
論文 参考訳(メタデータ) (2023-04-19T02:00:21Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - SSCAN: A Spatial-spectral Cross Attention Network for Hyperspectral
Image Denoising [12.873607414761093]
本稿では,グループ畳み込みとアテンションモジュールを組み合わせた新しいHSIデノベーションネットワークSSCANを提案する。
ハイパースペクトル画像における空間情報とスペクトル情報を有効利用するためのスペクトル空間アテンションブロック(SSAB)を提案する。
実験結果から,提案したSSCANは,最先端のHSI復調アルゴリズムよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-05-23T14:36:17Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。