Spin-augmented observables for efficient photonic quantum error
correction
- URL: http://arxiv.org/abs/2211.14123v1
- Date: Fri, 25 Nov 2022 14:05:52 GMT
- Title: Spin-augmented observables for efficient photonic quantum error
correction
- Authors: Elena Callus, Pieter Kok
- Abstract summary: We show that the spin state of solid-state emitters inside micropillar cavities can serve as measure qubits in syndrome measurements.
By performing a quantum non-demolition measurement on the spin state, the syndrome of the optical state can be obtained.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that the spin state of solid-state emitters inside micropillar
cavities can serve as measure qubits in syndrome measurements. The photons,
acting as data qubits, interact with the spin state in the microcavity and the
total state of the system evolves conditionally due to the resulting circular
birefringence. By performing a quantum non-demolition measurement on the spin
state, the syndrome of the optical state can be obtained. Furthermore, due to
the symmetry of the interaction, we can alternatively choose to employ the
optical states as measure qubits. This protocol can be adapted to various
resource requirements, including spectral discrepancies between the data qubits
and codes with modified connectivities, by considering entangled measure
qubits. Finally, we show that spin-systems with dissimilar characteristic
energies can still be entangled with high levels of fidelity and tolerance to
cavity losses in the strong coupling regime.
Related papers
- Quantum metrology of rotations with mixed spin states [0.0]
We show the potential of mixed spin-$j$ states to achieve sensitivity comparable to that of pure states in the measurement of infinitesimal rotations about arbitrary axes.
We present several examples of anticoherent subspaces and their associated mixed optimal quantum rotosensors.
arXiv Detail & Related papers (2024-04-23T22:33:05Z) - Enhanced quantum sensing mediated by a cavity in open systems [0.0]
We simulate the dynamics of systems with $N$ = 1-20 qubits coupled to a cavity.
We investigate the scaling of the uncertainty in the estimate of the qubit-cavity coupling with the number of qubits.
arXiv Detail & Related papers (2023-12-08T00:41:38Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Stochastic Mean-field Theory for Conditional Spin Squeezing by Homodyne
Probing of Atom-Cavity Photon Dressed States [7.382089528638367]
We present a variant of cumulant mean-field theory to simulate the effect of continuous optical probing of an atomic ensemble.
We apply the theory to a system with tens of thousands of rubidium-87 atom in an optical cavity.
arXiv Detail & Related papers (2023-06-01T16:25:30Z) - Commensurate and incommensurate 1D interacting quantum systems [0.0]
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes.
Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms.
arXiv Detail & Related papers (2023-05-05T18:49:43Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.