Neural Poisson: Indicator Functions for Neural Fields
- URL: http://arxiv.org/abs/2211.14249v1
- Date: Fri, 25 Nov 2022 17:28:22 GMT
- Title: Neural Poisson: Indicator Functions for Neural Fields
- Authors: Angela Dai and Matthias Nie{\ss}ner
- Abstract summary: Implicit neural field generating signed distance field representations (SDFs) of 3D shapes have shown remarkable progress.
We introduce a new paradigm for neural field representations of 3D scenes.
We show that our approach demonstrates state-of-the-art reconstruction performance on both synthetic and real scanned 3D scene data.
- Score: 25.41908065938424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural field generating signed distance field representations (SDFs)
of 3D shapes have shown remarkable progress in 3D shape reconstruction and
generation. We introduce a new paradigm for neural field representations of 3D
scenes; rather than characterizing surfaces as SDFs, we propose a
Poisson-inspired characterization for surfaces as indicator functions optimized
by neural fields. Crucially, for reconstruction of real scan data, the
indicator function representation enables simple and effective constraints
based on common range sensing inputs, which indicate empty space based on line
of sight. Such empty space information is intrinsic to the scanning process,
and incorporating this knowledge enables more accurate surface reconstruction.
We show that our approach demonstrates state-of-the-art reconstruction
performance on both synthetic and real scanned 3D scene data, with 9.5%
improvement in Chamfer distance over state of the art.
Related papers
- Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
arXiv Detail & Related papers (2024-10-18T05:48:06Z) - Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - Unsupervised Occupancy Learning from Sparse Point Cloud [8.732260277121547]
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities.
In this paper, we propose a method to infer occupancy fields instead of Neural Signed Distance Functions.
We highlight its capacity to improve implicit shape inference with respect to baselines and the state-of-the-art using synthetic and real data.
arXiv Detail & Related papers (2024-04-03T14:05:39Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering.
Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray.
arXiv Detail & Related papers (2023-09-19T05:44:00Z) - NeAT: Learning Neural Implicit Surfaces with Arbitrary Topologies from
Multi-view Images [17.637064969966847]
NeAT is a new neural rendering framework that learns implicit surfaces with arbitrary topologies from multi-view images.
NeAT supports easy field-to-mesh conversion using the classic Marching Cubes algorithm.
Our approach is able to faithfully reconstruct both watertight and non-watertight surfaces.
arXiv Detail & Related papers (2023-03-21T16:49:41Z) - Learning Neural Parametric Head Models [7.679586286000453]
We propose a novel 3D morphable model for complete human heads based on hybrid neural fields.
We capture a person's identity in a canonical space as a signed distance field (SDF), and model facial expressions with a neural deformation field.
Our representation achieves high-fidelity local detail by introducing an ensemble of local fields centered around facial anchor points.
arXiv Detail & Related papers (2022-12-06T05:24:42Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
We present a novel method, called NeuralUDF, for reconstructing surfaces with arbitrary topologies from 2D images via volume rendering.
In this paper, we propose to represent surfaces as the Unsigned Distance Function (UDF) and develop a new volume rendering scheme to learn the neural UDF representation.
arXiv Detail & Related papers (2022-11-25T15:21:45Z) - LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human
Modeling [69.56581851211841]
We propose a novel Local 4D implicit Representation for Dynamic clothed human, named LoRD.
Our key insight is to encourage the network to learn the latent codes of local part-level representation.
LoRD has strong capability for representing 4D human, and outperforms state-of-the-art methods on practical applications.
arXiv Detail & Related papers (2022-08-18T03:49:44Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDF is a continuous learning system for real-time signed distance field reconstruction.
It produces more accurate reconstructions and better approximations of collision costs and gradients.
arXiv Detail & Related papers (2022-04-05T15:48:39Z) - NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric
Mapping [29.3378360000956]
We present a novel 3D mapping method leveraging the recent progress in neural implicit representation for 3D reconstruction.
We propose a fusion strategy and training pipeline to incrementally build and update neural implicit representations.
We show that incrementally built occupancy maps can be obtained in real-time even on a CPU.
arXiv Detail & Related papers (2021-10-18T15:45:05Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.