論文の概要: FedSysID: A Federated Approach to Sample-Efficient System Identification
- arxiv url: http://arxiv.org/abs/2211.14393v1
- Date: Fri, 25 Nov 2022 22:24:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 20:43:32.249725
- Title: FedSysID: A Federated Approach to Sample-Efficient System Identification
- Title(参考訳): FedSysID: サンプル効率の良いシステム同定のためのフェデレートアプローチ
- Authors: Han Wang, Leonardo F. Toso, James Anderson
- Abstract要約: 我々は,M$Mのクライアントの観測から線形システムモデルを学ぶことの問題点を考察する。
我々は、この問題を連合学習問題として扱い、達成可能な性能とシステム不均一性の緊張を特徴づける。
- 参考スコア(独自算出の注目度): 3.7677951749356686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning a linear system model from the observations
of $M$ clients. The catch: Each client is observing data from a different
dynamical system. This work addresses the question of how multiple clients
collaboratively learn dynamical models in the presence of heterogeneity. We
pose this problem as a federated learning problem and characterize the tension
between achievable performance and system heterogeneity. Furthermore, our
federated sample complexity result provides a constant factor improvement over
the single agent setting. Finally, we describe a meta federated learning
algorithm, FedSysID, that leverages existing federated algorithms at the client
level.
- Abstract(参考訳): 我々は,M$Mのクライアントの観測から線形システムモデルを学習する問題を研究する。
キャッチ: 各クライアントは異なる動的システムからデータを監視している。
本研究は,複数のクライアントが互いに不均質な存在下で動的モデルをどのように学習するかという問題に対処する。
この問題を連合学習問題として捉え、実現可能な性能とシステムの不均一性の間の緊張を特徴付ける。
さらに, フェデレートされた試料の複雑さは, 単一エージェント設定よりも一定の係数改善をもたらす。
最後に,既存のフェデレーションアルゴリズムをクライアントレベルで活用するメタフェデレーション学習アルゴリズムであるFedSysIDについて述べる。
関連論文リスト
- FedECADO: A Dynamical System Model of Federated Learning [15.425099636035108]
フェデレーション学習は分散最適化の力を活用して、別々のクライアント間で統一された機械学習モデルをトレーニングする。
本研究は,フェデレート学習プロセスの動的システム表現にインスパイアされた新しいアルゴリズムであるFedECADOを提案する。
FedProxやFedNovaといった著名な技術と比較して、FedECADOは多くの異種シナリオにおいて高い分類精度を達成する。
論文 参考訳(メタデータ) (2024-10-13T17:26:43Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Federated cINN Clustering for Accurate Clustered Federated Learning [33.72494731516968]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習に対する革新的なアプローチである。
本稿では,クライアントを複数のグループに頑健にクラスタリングするFederated cINN Clustering Algorithm (FCCA)を提案する。
論文 参考訳(メタデータ) (2023-09-04T10:47:52Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Addressing Client Drift in Federated Continual Learning with Adaptive
Optimization [10.303676184878896]
本稿では,NetTailorを連続学習候補として活用することにより,FCL(Federated Continual Learning)を実現するための枠組みを概説する。
適応型フェデレーション最適化は,クライアントドリフトの悪影響を低減し,CIFAR100,MiniImagenet,Deathlonベンチマーク上での有効性を示す。
論文 参考訳(メタデータ) (2022-03-24T20:00:03Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - Aggregation Delayed Federated Learning [20.973999078271483]
フェデレーション学習(Federated Learning)は、複数のデータ所有者(クライアント)が、自身のデバイスにデータを保持しながら、ひとつのマシンラーニングモデルを協調的にトレーニングする分散機械学習パラダイムである。
非IIDデータ上では、FedAvgのような標準フェデレーションアルゴリズムによる性能低下が報告されている。
非IIDデータを扱うための多くの既存の作業は、FedAvgと同じ集約フレームワークを採用し、サーバ側またはクライアントでモデル更新を改善することに重点を置いている。
本研究では, 集約を遅らせる再分配ラウンドを導入することで, この課題に取り組み, 複数タスクの実験を行い, 提案したフレームワークが非IIDの性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-08-17T04:06:10Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。