FedSysID: A Federated Approach to Sample-Efficient System Identification
- URL: http://arxiv.org/abs/2211.14393v1
- Date: Fri, 25 Nov 2022 22:24:49 GMT
- Title: FedSysID: A Federated Approach to Sample-Efficient System Identification
- Authors: Han Wang, Leonardo F. Toso, James Anderson
- Abstract summary: We study the problem of learning a linear system model from the observations of $M$ clients.
We pose this problem as a federated learning problem and characterize the tension between achievable performance and system heterogeneity.
- Score: 3.7677951749356686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning a linear system model from the observations
of $M$ clients. The catch: Each client is observing data from a different
dynamical system. This work addresses the question of how multiple clients
collaboratively learn dynamical models in the presence of heterogeneity. We
pose this problem as a federated learning problem and characterize the tension
between achievable performance and system heterogeneity. Furthermore, our
federated sample complexity result provides a constant factor improvement over
the single agent setting. Finally, we describe a meta federated learning
algorithm, FedSysID, that leverages existing federated algorithms at the client
level.
Related papers
- FedECADO: A Dynamical System Model of Federated Learning [15.425099636035108]
Federated learning harnesses the power of distributed optimization to train a unified machine learning model across separate clients.
This work proposes FedECADO, a new algorithm inspired by a dynamical system representation of the federated learning process.
Compared to prominent techniques, including FedProx and FedNova, FedECADO achieves higher classification accuracies in numerous heterogeneous scenarios.
arXiv Detail & Related papers (2024-10-13T17:26:43Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Federated cINN Clustering for Accurate Clustered Federated Learning [33.72494731516968]
Federated Learning (FL) presents an innovative approach to privacy-preserving distributed machine learning.
We propose the Federated cINN Clustering Algorithm (FCCA) to robustly cluster clients into different groups.
arXiv Detail & Related papers (2023-09-04T10:47:52Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Addressing Client Drift in Federated Continual Learning with Adaptive
Optimization [10.303676184878896]
We outline a framework for performing Federated Continual Learning (FCL) by using NetTailor as a candidate continual learning approach.
We show that adaptive federated optimization can reduce the adverse impact of client drift and showcase its effectiveness on CIFAR100, MiniImagenet, and Decathlon benchmarks.
arXiv Detail & Related papers (2022-03-24T20:00:03Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
arXiv Detail & Related papers (2022-02-17T02:01:37Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Aggregation Delayed Federated Learning [20.973999078271483]
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices.
Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data.
Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients.
In this work, we tackle this challenge by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID
arXiv Detail & Related papers (2021-08-17T04:06:10Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.