FedECADO: A Dynamical System Model of Federated Learning
- URL: http://arxiv.org/abs/2410.09933v1
- Date: Sun, 13 Oct 2024 17:26:43 GMT
- Title: FedECADO: A Dynamical System Model of Federated Learning
- Authors: Aayushya Agarwal, Gauri Joshi, Larry Pileggi,
- Abstract summary: Federated learning harnesses the power of distributed optimization to train a unified machine learning model across separate clients.
This work proposes FedECADO, a new algorithm inspired by a dynamical system representation of the federated learning process.
Compared to prominent techniques, including FedProx and FedNova, FedECADO achieves higher classification accuracies in numerous heterogeneous scenarios.
- Score: 15.425099636035108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning harnesses the power of distributed optimization to train a unified machine learning model across separate clients. However, heterogeneous data distributions and computational workloads can lead to inconsistent updates and limit model performance. This work tackles these challenges by proposing FedECADO, a new algorithm inspired by a dynamical system representation of the federated learning process. FedECADO addresses non-IID data distribution through an aggregate sensitivity model that reflects the amount of data processed by each client. To tackle heterogeneous computing, we design a multi-rate integration method with adaptive step-size selections that synchronizes active client updates in continuous time. Compared to prominent techniques, including FedProx and FedNova, FedECADO achieves higher classification accuracies in numerous heterogeneous scenarios.
Related papers
- FedAST: Federated Asynchronous Simultaneous Training [27.492821176616815]
Federated Learning (FL) enables devices or clients to collaboratively train machine learning (ML) models without sharing their private data.
Much of the existing work in FL focuses on efficiently learning a model for a single task.
In this paper, we propose simultaneous training of multiple FL models using a common set of datasets.
arXiv Detail & Related papers (2024-06-01T05:14:20Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning based on Pruning and Recovery [0.0]
This framework integrates asynchronous learning algorithms and pruning techniques.
It addresses the inefficiencies of traditional federated learning algorithms in scenarios involving heterogeneous devices.
It also tackles the staleness issue and inadequate training of certain clients in asynchronous algorithms.
arXiv Detail & Related papers (2024-03-16T14:35:03Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Mitigating System Bias in Resource Constrained Asynchronous Federated
Learning Systems [2.8790600498444032]
We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments.
Our method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities.
arXiv Detail & Related papers (2024-01-24T10:51:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - FedSysID: A Federated Approach to Sample-Efficient System Identification [3.7677951749356686]
We study the problem of learning a linear system model from the observations of $M$ clients.
We pose this problem as a federated learning problem and characterize the tension between achievable performance and system heterogeneity.
arXiv Detail & Related papers (2022-11-25T22:24:49Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.