Learning Branching Heuristics from Graph Neural Networks
- URL: http://arxiv.org/abs/2211.14405v1
- Date: Sat, 26 Nov 2022 00:01:01 GMT
- Title: Learning Branching Heuristics from Graph Neural Networks
- Authors: Congsong Zhang and Yong Gao and James Nastos
- Abstract summary: We first propose a new graph neural network (GNN) model designed using a probabilistic method.
Our approach introduces a new way of applying GNNs towards enhancing the classical backtracking algorithm used in AI.
- Score: 1.4660170768702356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backtracking has been widely used for solving problems in artificial
intelligence (AI), including constraint satisfaction problems and combinatorial
optimization problems. Good branching heuristics can efficiently improve the
performance of backtracking by helping prune the search space and leading the
search to the most promising direction. In this paper, we first propose a new
graph neural network (GNN) model designed using the probabilistic method. From
the GNN model, we introduce an approach to learn a branching heuristic for
combinatorial optimization problems. In particular, our GNN model learns
appropriate probability distributions on vertices in given graphs from which
the branching heuristic is extracted and used in a backtracking search. Our
experimental results for the (minimum) dominating-clique problem show that this
learned branching heuristic performs better than the minimum-remaining-values
heuristic in terms of the number of branches of the whole search tree. Our
approach introduces a new way of applying GNNs towards enhancing the classical
backtracking algorithm used in AI.
Related papers
- Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems [0.0]
Graph Neural Networks (GNNs) show promise for researchers in solving Combinatorial optimization (CO) problems.
This study investigates the effectiveness of GNNs in solving the maximum independent set (MIS) problem.
arXiv Detail & Related papers (2024-11-06T09:12:31Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
This paper studies how to introduce the popular positive linear satisfiability to neural networks.
We propose the first differentiable satisfiability layer based on an extension of the classic Sinkhorn algorithm for jointly encoding multiple sets of marginal distributions.
arXiv Detail & Related papers (2024-07-18T22:05:21Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Graph Convolutional Branch and Bound [1.8966938152549224]
This article demonstrates the effectiveness of employing a deep learning model in an optimization pipeline.
In this context, neural networks can be leveraged to rapidly acquire valuable information.
arXiv Detail & Related papers (2024-06-05T09:42:43Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Inability of a graph neural network heuristic to outperform greedy
algorithms in solving combinatorial optimization problems like Max-Cut [0.0]
In Nature Machine Intelligence 4, 367 (2022), Schuetz et al provide a scheme to employ neural graph networks (GNN) to solve a variety of classical, NP-hard optimization problems.
It describes how the network is trained on sample instances and the resulting GNN is evaluated applying widely used techniques to determine its ability to succeed.
However, closer inspection shows that the reported results for this GNN are only minutely better than those for gradient descent and get outperformed by a greedy algorithm.
arXiv Detail & Related papers (2022-10-02T20:50:33Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
We introduce GNNRank, a modeling framework compatible with any GNN capable of learning digraph embeddings.
We show that our methods attain competitive and often superior performance compared with existing approaches.
arXiv Detail & Related papers (2022-02-01T04:19:50Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - GLSearch: Maximum Common Subgraph Detection via Learning to Search [33.9052190473029]
We propose GLSearch, a Graph Neural Network (GNN) based learning to search model.
Our model is built upon the branch and bound bound, which selects one pair of nodes from the two input graphs to expand at a time.
Our GLSearch can be potentially extended to solve many other problems with constraints on graphs.
arXiv Detail & Related papers (2020-02-08T10:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.