Graph Convolutional Branch and Bound
- URL: http://arxiv.org/abs/2406.03099v2
- Date: Thu, 6 Jun 2024 07:46:26 GMT
- Title: Graph Convolutional Branch and Bound
- Authors: Lorenzo Sciandra, Roberto Esposito, Andrea Cesare Grosso, Laura Sacerdote, Cristina Zucca,
- Abstract summary: This article demonstrates the effectiveness of employing a deep learning model in an optimization pipeline.
In this context, neural networks can be leveraged to rapidly acquire valuable information.
- Score: 1.8966938152549224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article demonstrates the effectiveness of employing a deep learning model in an optimization pipeline. Specifically, in a generic exact algorithm for a NP problem, multiple heuristic criteria are usually used to guide the search of the optimum within the set of all feasible solutions. In this context, neural networks can be leveraged to rapidly acquire valuable information, enabling the identification of a more expedient path in this vast space. So, after the explanation of the tackled traveling salesman problem, the implemented branch and bound for its classical resolution is described. This algorithm is then compared with its hybrid version termed "graph convolutional branch and bound" that integrates the previous branch and bound with a graph convolutional neural network. The empirical results obtained highlight the efficacy of this approach, leading to conclusive findings and suggesting potential directions for future research.
Related papers
- Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks [6.675805308519987]
Leakages are a significant challenge for the efficient and sustainable management of water distribution networks.
Recent approaches have used graph-based data-driven methods.
We propose an algorithm-informed graph neural network (AIGNN) to detect and localize leaks.
arXiv Detail & Related papers (2024-08-05T19:25:05Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Learning Branching Heuristics from Graph Neural Networks [1.4660170768702356]
We first propose a new graph neural network (GNN) model designed using a probabilistic method.
Our approach introduces a new way of applying GNNs towards enhancing the classical backtracking algorithm used in AI.
arXiv Detail & Related papers (2022-11-26T00:01:01Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Inability of a graph neural network heuristic to outperform greedy
algorithms in solving combinatorial optimization problems like Max-Cut [0.0]
In Nature Machine Intelligence 4, 367 (2022), Schuetz et al provide a scheme to employ neural graph networks (GNN) to solve a variety of classical, NP-hard optimization problems.
It describes how the network is trained on sample instances and the resulting GNN is evaluated applying widely used techniques to determine its ability to succeed.
However, closer inspection shows that the reported results for this GNN are only minutely better than those for gradient descent and get outperformed by a greedy algorithm.
arXiv Detail & Related papers (2022-10-02T20:50:33Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Neural Bipartite Matching [19.600193617583955]
This report describes how neural execution is applied to a complex algorithm.
It is achieved via neural execution based only on features generated from a single GNN.
The evaluation shows strongly generalising results with the network achieving optimal matching almost 100% of the time.
arXiv Detail & Related papers (2020-05-22T17:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.