論文の概要: PatchGT: Transformer over Non-trainable Clusters for Learning Graph
Representations
- arxiv url: http://arxiv.org/abs/2211.14425v2
- Date: Fri, 7 Apr 2023 19:39:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 21:32:27.217099
- Title: PatchGT: Transformer over Non-trainable Clusters for Learning Graph
Representations
- Title(参考訳): patchgt: グラフ表現学習のための非学習型クラスタ上のトランスフォーマー
- Authors: Han Gao, Xu Han, Jiaoyang Huang, Jian-Xun Wang, Li-Ping Liu
- Abstract要約: 我々は、新しいTransformerベースのグラフニューラルネットワーク、Patch Graph Transformer(PatchGT)を提案する。
グラフ表現を学習する従来のトランスフォーマーベースモデルとは異なり、PatchGTはノードから直接ではなく、トレーニング不可能なグラフパッチから学習する。
PatchGTは1-WL型GNNよりも高い性能を達成し,ベンチマークデータセット上でPatchGTが競合性能を達成することを示す実証的研究を行った。
- 参考スコア(独自算出の注目度): 18.203910156450085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently the Transformer structure has shown good performances in graph
learning tasks. However, these Transformer models directly work on graph nodes
and may have difficulties learning high-level information. Inspired by the
vision transformer, which applies to image patches, we propose a new
Transformer-based graph neural network: Patch Graph Transformer (PatchGT).
Unlike previous transformer-based models for learning graph representations,
PatchGT learns from non-trainable graph patches, not from nodes directly. It
can help save computation and improve the model performance. The key idea is to
segment a graph into patches based on spectral clustering without any trainable
parameters, with which the model can first use GNN layers to learn patch-level
representations and then use Transformer to obtain graph-level representations.
The architecture leverages the spectral information of graphs and combines the
strengths of GNNs and Transformers. Further, we show the limitations of
previous hierarchical trainable clusters theoretically and empirically. We also
prove the proposed non-trainable spectral clustering method is permutation
invariant and can help address the information bottlenecks in the graph.
PatchGT achieves higher expressiveness than 1-WL-type GNNs, and the empirical
study shows that PatchGT achieves competitive performances on benchmark
datasets and provides interpretability to its predictions. The implementation
of our algorithm is released at our Github repo:
https://github.com/tufts-ml/PatchGT.
- Abstract(参考訳): 近年、トランスフォーマー構造はグラフ学習タスクにおいて優れた性能を示している。
しかし、これらのTransformerモデルはグラフノード上で直接動作するため、高いレベルの情報を学ぶのが困難である。
画像パッチに適用可能な視覚トランスフォーマーに着想を得て,新しいトランスフォーマーベースのグラフニューラルネットワークであるpatch graph transformer (patchgt)を提案する。
グラフ表現を学習する従来のトランスフォーマーベースモデルとは異なり、PatchGTはノードから直接ではなく、トレーニング不可能なグラフパッチから学習する。
計算を省き、モデルのパフォーマンスを向上させるのに役立つ。
重要なアイデアは、トレーニング可能なパラメータを使わずに、グラフをスペクトルクラスタリングに基づいてパッチに分割することであり、モデルが最初にgnnレイヤを使用してパッチレベルの表現を学習し、次にtransformerを使用してグラフレベルの表現を得る。
このアーキテクチャはグラフのスペクトル情報を活用し、GNNとTransformerの強度を組み合わせる。
さらに,従来の階層的トレーニング可能なクラスタの制限を理論的および経験的に示す。
また,提案手法が置換不変であり,グラフの情報ボトルネックに対処するのに役立つことを証明した。
PatchGTは1-WL型GNNよりも高い表現性を実現しており、PatchGTはベンチマークデータセット上での競合性能を達成し、その予測に解釈可能性を提供する。
私たちのアルゴリズムの実装は、Githubリポジトリで公開されています。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information [0.8184895397419141]
グラフトランスフォーマーは、メッセージパッシンググラフニューラルネットワーク(MP-GNN)の強力な代替品として登場した。
本稿では,グラフスペクトル情報を直接符号化する新しい手法であるグラフスペクトルトークンを提案する。
既存のグラフ変換器であるGraphTransとSubFormerを拡張して,提案手法の有効性をベンチマークする。
論文 参考訳(メタデータ) (2024-04-08T15:24:20Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - GraphGPT: Graph Learning with Generative Pre-trained Transformers [9.862004020075126]
自己教師型生成事前学習変換器によるグラフ学習の新しいモデルである textitGraphGPT を紹介する。
我々のモデルでは,各グラフやサンプリングされたサブグラフを,ノード,エッジ,属性を表すトークン列に変換する。
生成前トレーニングにより、パフォーマンスを継続的に向上させることなく、最大4M以上のパラメータをGraphGPTでトレーニングすることが可能になります。
論文 参考訳(メタデータ) (2023-12-31T16:19:30Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Graph Propagation Transformer for Graph Representation Learning [32.77379936182841]
グラフ伝搬注意(GPA)と呼ばれる新しい注意機構を提案する。
ノード・ツー・ノード、ノード・ツー・エッジ、エッジ・ツー・ノードという3つの方法で、ノードとエッジ間で明示的に情報を渡す。
提案手法は,多くの最先端のトランスフォーマーベースグラフモデルよりも優れた性能を有することを示す。
論文 参考訳(メタデータ) (2023-05-19T04:42:58Z) - Pure Transformers are Powerful Graph Learners [51.36884247453605]
グラフ固有の修正のない標準変換器は、理論と実践の両方において、グラフ学習において有望な結果をもたらす可能性があることを示す。
このアプローチは、理論的には、同変線形層からなる不変グラフネットワーク(2-IGN)と同程度に表現可能であることを証明している。
提案手法は,Tokenized Graph Transformer (TokenGT) を作成した。
論文 参考訳(メタデータ) (2022-07-06T08:13:06Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
標準の Transformer アーキテクチャをベースに構築された Graphormer について述べる。
グラフでTransformerを利用する上で重要な洞察は、グラフの構造情報をモデルに効果的にエンコードする必要があることである。
論文 参考訳(メタデータ) (2021-06-09T17:18:52Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。