論文の概要: Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information
- arxiv url: http://arxiv.org/abs/2404.05604v1
- Date: Mon, 8 Apr 2024 15:24:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 13:55:49.093673
- Title: Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information
- Title(参考訳): 技術的報告: グラフスペクトルトークン -- スペクトル情報によるグラフトランスフォーマーの強化
- Authors: Zihan Pengmei, Zimu Li,
- Abstract要約: グラフトランスフォーマーは、メッセージパッシンググラフニューラルネットワーク(MP-GNN)の強力な代替品として登場した。
本稿では,グラフスペクトル情報を直接符号化する新しい手法であるグラフスペクトルトークンを提案する。
既存のグラフ変換器であるGraphTransとSubFormerを拡張して,提案手法の有効性をベンチマークする。
- 参考スコア(独自算出の注目度): 0.8184895397419141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Transformers have emerged as a powerful alternative to Message-Passing Graph Neural Networks (MP-GNNs) to address limitations such as over-squashing of information exchange. However, incorporating graph inductive bias into transformer architectures remains a significant challenge. In this report, we propose the Graph Spectral Token, a novel approach to directly encode graph spectral information, which captures the global structure of the graph, into the transformer architecture. By parameterizing the auxiliary [CLS] token and leaving other tokens representing graph nodes, our method seamlessly integrates spectral information into the learning process. We benchmark the effectiveness of our approach by enhancing two existing graph transformers, GraphTrans and SubFormer. The improved GraphTrans, dubbed GraphTrans-Spec, achieves over 10% improvements on large graph benchmark datasets while maintaining efficiency comparable to MP-GNNs. SubFormer-Spec demonstrates strong performance across various datasets.
- Abstract(参考訳): グラフトランスフォーマーは、情報交換の過剰シャッシングのような制限に対処するために、メッセージパッシンググラフニューラルネットワーク(MP-GNN)の強力な代替手段として登場した。
しかし、グラフ帰納バイアスをトランスフォーマーアーキテクチャに組み込むことは、依然として大きな課題である。
本稿では,グラフのグローバルな構造を捉えたグラフスペクトル情報をトランスフォーマーアーキテクチャへ直接エンコードする新しい手法であるグラフスペクトルトークンを提案する。
補助的[CLS]トークンをパラメータ化し,グラフノードを表す他のトークンを残しておくことで,スペクトル情報を学習プロセスにシームレスに統合する。
既存のグラフ変換器であるGraphTransとSubFormerを拡張して,提案手法の有効性をベンチマークする。
GraphTrans-Specと呼ばれる改善されたGraphTransは、大きなグラフベンチマークデータセットで10%以上の改善を実現し、MP-GNNに匹敵する効率を維持している。
SubFormer-Specは、さまざまなデータセットで強力なパフォーマンスを示している。
関連論文リスト
- Graph Transformers without Positional Encodings [0.7252027234425334]
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
論文 参考訳(メタデータ) (2024-01-31T12:33:31Z) - Through the Dual-Prism: A Spectral Perspective on Graph Data
Augmentation for Graph Classification [71.36575018271405]
本稿では,DP-NoiseとDP-Maskを組み合わせたDual-Prism(DP)拡張手法を提案する。
低周波固有値の変動を保ちながら、拡張グラフを生成する際に、臨界特性を大規模に保存できることが判明した。
論文 参考訳(メタデータ) (2024-01-18T12:58:53Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - Graph Propagation Transformer for Graph Representation Learning [32.77379936182841]
グラフ伝搬注意(GPA)と呼ばれる新しい注意機構を提案する。
ノード・ツー・ノード、ノード・ツー・エッジ、エッジ・ツー・ノードという3つの方法で、ノードとエッジ間で明示的に情報を渡す。
提案手法は,多くの最先端のトランスフォーマーベースグラフモデルよりも優れた性能を有することを示す。
論文 参考訳(メタデータ) (2023-05-19T04:42:58Z) - Diffusing Graph Attention [15.013509382069046]
任意のグラフ構造をアーキテクチャに統合するグラフ変換器の新しいモデルを開発した。
GDはグラフ内の遠いノード間の構造的および位置的関係を抽出し、Transformerの注意とノード表現を指示する。
8つのベンチマークの実験では、グラフディフューザは高い競争力を持つモデルであることが示され、さまざまなドメインセットにおける最先端よりも優れています。
論文 参考訳(メタデータ) (2023-03-01T16:11:05Z) - Are More Layers Beneficial to Graph Transformers? [97.05661983225603]
現在のグラフ変換器は、深さの増大によるパフォーマンス向上のボトルネックに悩まされている。
ディープグラフ変換器は、グローバルな注目の消滅能力によって制限されている。
本稿では,符号化表現に部分構造トークンを明示的に用いたDeepGraphという新しいグラフトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-03-01T15:22:40Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
有向非巡回グラフ(DAG)上の変換器について検討し,DAGに適したアーキテクチャ適応を提案する。
グラフトランスフォーマーは、DAGに適したグラフニューラルネットワークを概ね上回り、品質と効率の両面でSOTAグラフトランスフォーマーの性能を向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-24T12:04:52Z) - Pure Transformers are Powerful Graph Learners [51.36884247453605]
グラフ固有の修正のない標準変換器は、理論と実践の両方において、グラフ学習において有望な結果をもたらす可能性があることを示す。
このアプローチは、理論的には、同変線形層からなる不変グラフネットワーク(2-IGN)と同程度に表現可能であることを証明している。
提案手法は,Tokenized Graph Transformer (TokenGT) を作成した。
論文 参考訳(メタデータ) (2022-07-06T08:13:06Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
標準の Transformer アーキテクチャをベースに構築された Graphormer について述べる。
グラフでTransformerを利用する上で重要な洞察は、グラフの構造情報をモデルに効果的にエンコードする必要があることである。
論文 参考訳(メタデータ) (2021-06-09T17:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。