Variational Tensor Neural Networks for Deep Learning
- URL: http://arxiv.org/abs/2211.14657v2
- Date: Sun, 8 Jan 2023 13:58:58 GMT
- Title: Variational Tensor Neural Networks for Deep Learning
- Authors: Saeed S. Jahromi, Roman Orus
- Abstract summary: We propose the integration of tensor networks (TN) into deep neural networks (NNs)
This results in a scalable tensor neural network (TNN) architecture that can be efficiently trained for a large number of neurons and layers.
Our training algorithm provides insight into the entanglement structure of the tensorized trainable weights, as well as clarify the expressive power as a quantum neural state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (NN) suffer from scaling issues when considering a large
number of neurons, in turn limiting also the accessible number of layers. To
overcome this, here we propose the integration of tensor networks (TN) into
NNs, in combination with variational DMRG-like optimization. This results in a
scalable tensor neural network (TNN) architecture that can be efficiently
trained for a large number of neurons and layers. The variational algorithm
relies on a local gradient-descent technique, with tensor gradients being
computable either manually or by automatic differentiation, in turn allowing
for hybrid TNN models combining dense and tensor layers. Our training algorithm
provides insight into the entanglement structure of the tensorized trainable
weights, as well as clarify the expressive power as a quantum neural state. We
benchmark the accuracy and efficiency of our algorithm by designing TNN models
for regression and classification on different datasets. In addition, we also
discuss the expressive power of our algorithm based on the entanglement
structure of the neural network.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
Spiking neural networks (SNNs) represent a promising approach in machine learning, combining the hierarchical learning capabilities of deep neural networks with the energy efficiency of spike-based computations.
Traditional end-to-end training of SNNs is often based on back-propagation, where weight updates are derived from gradients computed through the chain rule.
This method encounters challenges due to its limited biological plausibility and inefficiencies on neuromorphic hardware.
In this study, we introduce an alternative training approach for SNNs. Instead of using back-propagation, we leverage weight perturbation methods within a forward-mode
arXiv Detail & Related papers (2024-11-11T15:20:54Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - TT-SNN: Tensor Train Decomposition for Efficient Spiking Neural Network
Training [27.565726483503838]
We introduce Train Decomposition for Spiking Neural Networks (TT-SNN)
TT-SNN reduces model size through trainable weight decomposition, resulting in reduced storage, FLOPs, and latency.
We also propose a parallel computation as an alternative to the typical sequential tensor computation.
arXiv Detail & Related papers (2024-01-15T23:08:19Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - A Gradient Boosting Approach for Training Convolutional and Deep Neural
Networks [0.0]
We introduce two procedures for training Convolutional Neural Networks (CNNs) and Deep Neural Network based on Gradient Boosting (GB)
The presented models show superior performance in terms of classification accuracy with respect to standard CNN and Deep-NN with the same architectures.
arXiv Detail & Related papers (2023-02-22T12:17:32Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Block-term Tensor Neural Networks [29.442026567710435]
We show that block-term tensor layers (BT-layers) can be easily adapted to neural network models, such as CNNs and RNNs.
BT-layers in CNNs and RNNs can achieve a very large compression ratio on the number of parameters while preserving or improving the representation power of the original DNNs.
arXiv Detail & Related papers (2020-10-10T09:58:43Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.