Waveflow: boundary-conditioned normalizing flows applied to fermionic wavefunctions
- URL: http://arxiv.org/abs/2211.14839v3
- Date: Thu, 18 Jul 2024 20:57:51 GMT
- Title: Waveflow: boundary-conditioned normalizing flows applied to fermionic wavefunctions
- Authors: Luca Thiede, Chong Sun, Alán Aspuru-Guzik,
- Abstract summary: We introduce Waveflow, a framework for learning fermionic wavefunctions using boundary-conditioned normalizing flows.
We show that Waveflow can effectively resolve topological mismatches and faithfully learn the ground-state wavefunction.
- Score: 3.7135179920970534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An efficient and expressive wavefunction ansatz is key to scalable solutions for complex many-body electronic structures. While Slater determinants are predominantly used for constructing antisymmetric electronic wavefunction ans\"{a}tze, this construction can result in limited expressiveness when the targeted wavefunction is highly complex. In this work, we introduce Waveflow, an innovative framework for learning many-body fermionic wavefunctions using boundary-conditioned normalizing flows. Instead of relying on Slater determinants, Waveflow imposes antisymmetry by defining the fundamental domain of the wavefunction and applying necessary boundary conditions. A key challenge in using normalizing flows for this purpose is addressing the topological mismatch between the prior and target distributions. We propose using O-spline priors and I-spline bijections to handle this mismatch, which allows for flexibility in the node number of the distribution while automatically maintaining its square-normalization property. We apply Waveflow to a one-dimensional many-electron system, where we variationally minimize the system's energy using variational quantum Monte Carlo (VQMC). Our experiments demonstrate that Waveflow can effectively resolve topological mismatches and faithfully learn the ground-state wavefunction.
Related papers
- A Theoretical Framework for an Efficient Normalizing Flow-Based Solution to the Electronic Schrodinger Equation [8.648660469053342]
A central problem in quantum mechanics involves solving the Electronic Schrodinger Equation for a molecule or material.
We propose a solution via an ansatz which is cheap to sample from, yet satisfies the requisite quantum mechanical properties.
arXiv Detail & Related papers (2024-05-28T15:42:15Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Dynamical singularity of the rate function for quench dynamics in
finite-size quantum systems [1.2514666672776884]
We study the realization of the dynamical singularity of the rate function for finite-size systems under the twist boundary condition.
We show that exact zeros of the Loschmidt echo can be always achieved when the postquench parameter is across the underlying equilibrium phase transition point.
arXiv Detail & Related papers (2022-11-06T14:35:57Z) - Wave function Ansatz (but Periodic) Networks and the Homogeneous
Electron Gas [1.7944372791281356]
We design a neural network Ansatz for variationally finding the ground-state wave function of the Homogeneous Electron Gas.
We study the spin-polarised and paramagnetic phases with 7, 14 and 19 electrons over a broad range of densities.
This contribution establishes neural network models as flexible and high precision Ans"atze for periodic electronic systems.
arXiv Detail & Related papers (2022-02-02T14:12:49Z) - Fermionic Wave Functions from Neural-Network Constrained Hidden States [1.7549208519206603]
We introduce a systematically improvable family of variational wave functions for the simulation of strongly correlated fermionic systems.
This family consists of Slater determinants in an augmented Hilbert space involving "hidden" additional fermionic degrees of freedom.
We apply this construction to the ground state properties of the Hubbard model on the square lattice, achieving levels of accuracy which are competitive with state-of-the-art variational methods.
arXiv Detail & Related papers (2021-11-19T20:02:03Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Optimal Control of Closed Quantum Systems via B-Splines with Carrier
Waves [0.0]
We consider the optimal control problem of determining electromagnetic pulses for implementing logical gates in a closed quantum system.
A novel parameterization of the control functions based on B-splines with carrier waves is introduced.
We present numerical examples of how the proposed technique can be combined with an interior point L-BFGS algorithm for realizing quantum gates.
arXiv Detail & Related papers (2021-06-27T18:41:39Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.