Impact of Strategic Sampling and Supervision Policies on Semi-supervised Learning
- URL: http://arxiv.org/abs/2211.14912v2
- Date: Sun, 03 Nov 2024 09:20:07 GMT
- Title: Impact of Strategic Sampling and Supervision Policies on Semi-supervised Learning
- Authors: Shuvendu Roy, Ali Etemad,
- Abstract summary: In semi-supervised representation learning frameworks, when the number of labelled data is very scarce, the quality and representativeness of these samples become increasingly important.
Existing literature on semi-supervised learning randomly sample a limited number of data points for labelling.
All these labelled samples are then used along with the unlabelled data throughout the training process.
- Score: 23.4909421082857
- License:
- Abstract: In semi-supervised representation learning frameworks, when the number of labelled data is very scarce, the quality and representativeness of these samples become increasingly important. Existing literature on semi-supervised learning randomly sample a limited number of data points for labelling. All these labelled samples are then used along with the unlabelled data throughout the training process. In this work, we ask two important questions in this context: (1) does it matter which samples are selected for labelling? (2) does it matter how the labelled samples are used throughout the training process along with the unlabelled data? To answer the first question, we explore a number of unsupervised methods for selecting specific subsets of data to label (without prior knowledge of their labels), with the goal of maximizing representativeness w.r.t. the unlabelled set. Then, for our second line of inquiry, we define a variety of different label injection strategies in the training process. Extensive experiments on four popular datasets, CIFAR-10, CIFAR-100, SVHN, and STL-10, show that unsupervised selection of samples that are more representative of the entire data improves performance by up to ~2% over the existing semi-supervised frameworks such as MixMatch, ReMixMatch, FixMatch and others with random sample labelling. We show that this boost could even increase to 7.5% for very few-labelled scenarios. However, our study shows that gradually injecting the labels throughout the training procedure does not impact the performance considerably versus when all the existing labels are used throughout the entire training.
Related papers
- Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - An analysis of over-sampling labeled data in semi-supervised learning
with FixMatch [66.34968300128631]
Most semi-supervised learning methods over-sample labeled data when constructing training mini-batches.
This paper studies whether this common practice improves learning and how.
We compare it to an alternative setting where each mini-batch is uniformly sampled from all the training data, labeled or not.
arXiv Detail & Related papers (2022-01-03T12:22:26Z) - Unsupervised Selective Labeling for More Effective Semi-Supervised
Learning [46.414510522978425]
unsupervised selective labeling consistently improves SSL methods over state-of-the-art active learning given labeled data.
Our work sets a new standard for practical and efficient SSL.
arXiv Detail & Related papers (2021-10-06T18:25:50Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z) - Are Fewer Labels Possible for Few-shot Learning? [81.89996465197392]
Few-shot learning is challenging due to its very limited data and labels.
Recent studies in big transfer (BiT) show that few-shot learning can greatly benefit from pretraining on large scale labeled dataset in a different domain.
We propose eigen-finetuning to enable fewer shot learning by leveraging the co-evolution of clustering and eigen-samples in the finetuning.
arXiv Detail & Related papers (2020-12-10T18:59:29Z) - Identifying Mislabeled Data using the Area Under the Margin Ranking [35.57623165270438]
This paper introduces a new method to identify such samples and mitigate their impact when training neural networks.
A simple procedure - adding an extra class populated with purposefully mislabeled threshold samples - learns a AUM upper bound that isolates mislabeled data.
On the WebVision50 classification task our method removes 17% of training data, yielding a 1.6% (absolute) improvement in test error.
arXiv Detail & Related papers (2020-01-28T18:59:03Z) - Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised
Learning [27.258077365554474]
We revisit the idea of pseudo-labeling in the context of semi-supervised learning.
Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set.
We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples.
arXiv Detail & Related papers (2020-01-16T03:24:27Z) - Rethinking Curriculum Learning with Incremental Labels and Adaptive
Compensation [35.593312267921256]
Like humans, deep networks have been shown to learn better when samples are organized and introduced in a meaningful order or curriculum.
We propose Learning with Incremental Labels and Adaptive Compensation (LILAC), a two-phase method that incrementally increases the number of unique output labels.
arXiv Detail & Related papers (2020-01-13T21:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.