論文の概要: UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of
Recent Learning Algorithms
- arxiv url: http://arxiv.org/abs/2211.14931v1
- Date: Sun, 27 Nov 2022 20:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 22:55:55.716584
- Title: UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of
Recent Learning Algorithms
- Title(参考訳): uav支援スペースエアグラウンド統合ネットワーク:最近の学習アルゴリズムの技術的レビュー
- Authors: Atefeh H. Arani, Peng Hu, Yeying Zhu
- Abstract要約: 無人航空機(UAV)は宇宙航空地上統合ネットワーク(SAGIN)において重要な役割を果たしている
UAVの高ダイナミック性と複雑さのため、SAGINの実際の展開は、そのようなSAGINを実現する上で大きな障壁となる。
- 参考スコア(独自算出の注目度): 6.687912132962003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent technological advancements in space, air and ground components have
made possible a new network paradigm called "space-air-ground integrated
network" (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs.
However, due to UAVs' high dynamics and complexity, the real-world deployment
of a SAGIN becomes a major barrier for realizing such SAGINs. Compared to the
space and terrestrial components, UAVs are expected to meet performance
requirements with high flexibility and dynamics using limited resources.
Therefore, employing UAVs in various usage scenarios requires well-designed
planning in algorithmic approaches. In this paper, we provide a comprehensive
review of recent learning-based algorithmic approaches. We consider possible
reward functions and discuss the state-of-the-art algorithms for optimizing the
reward functions, including Q-learning, deep Q-learning, multi-armed bandit
(MAB), particle swarm optimization (PSO) and satisfaction-based learning
algorithms. Unlike other survey papers, we focus on the methodological
perspective of the optimization problem, which can be applicable to various
UAV-assisted missions on a SAGIN using these algorithms. We simulate users and
environments according to real-world scenarios and compare the learning-based
and PSO-based methods in terms of throughput, load, fairness, computation time,
etc. We also implement and evaluate the 2-dimensional (2D) and 3-dimensional
(3D) variations of these algorithms to reflect different deployment cases. Our
simulation suggests that the $3$D satisfaction-based learning algorithm
outperforms the other approaches for various metrics in most cases. We discuss
some open challenges at the end and our findings aim to provide design
guidelines for algorithm selections while optimizing the deployment of
UAV-assisted SAGINs.
- Abstract(参考訳): 宇宙・空・地上コンポーネントの最近の技術進歩により、宇宙地上統合ネットワーク(SAGIN)と呼ばれる新しいネットワークパラダイムが実現された。
無人航空機(UAV)はSAGINにおいて重要な役割を果たしている。
しかし、UAVの高ダイナミック性と複雑さのため、SAGINの実際の展開は、そのようなSAGINを実現する上で大きな障壁となる。
宇宙と地上のコンポーネントと比較して、UAVは限られたリソースを使用して高い柔軟性とダイナミックスで性能要求を満たすことが期待されている。
したがって、様々なシナリオでuavを使用するには、アルゴリズム的アプローチで適切に設計された計画が必要となる。
本稿では,最近の学習に基づくアルゴリズムアプローチの包括的レビューを行う。
報奨関数について検討し,q-learning,deep q-learning,multi-armed bandit (mab), particle swarm optimization (pso), satisfaction-based learningアルゴリズムなどの報奨関数を最適化するための最先端アルゴリズムについて論じる。
他の調査論文とは異なり、これらのアルゴリズムを用いて様々なuav支援ミッションに適用可能な最適化問題の方法論的視点に焦点を当てる。
実際のシナリオに従ってユーザと環境をシミュレートし、スループット、負荷、公平性、計算時間などの観点から学習ベースとpsoベースの手法を比較します。
また,これらアルゴリズムの2次元(2次元)と3次元(3次元)のバリエーションを実装し評価し,異なる展開事例を反映する。
シミュレーションによると、3ドルの満足度に基づく学習アルゴリズムは、多くの場合、さまざまなメトリクスに対する他のアプローチよりも優れています。
本研究の目的は,UAV支援SAGINの展開を最適化しつつ,アルゴリズム選択の設計ガイドラインを提供することである。
関連論文リスト
- Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
無人航空機(UAV)は、地上の利用者に無線サービスを提供する学術・産業の研究者の注目を集めている。
UAVの限られたリソースは、そのようなアプリケーションにUAVを採用する上での課題を引き起こす可能性がある。
システムモデルでは,地域をナビゲートするUAVスワムを考慮し,RISをサポートした地上ユーザへの無線通信により,UAVのカバレッジを向上させる。
論文 参考訳(メタデータ) (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms [5.57865728456594]
無人航空機(UAV)は、重要な緊急用途に使用される可能性があるとして、学術や産業の研究者の注目を集めている。
これらのアプリケーションには、地上のユーザーに無線サービスを提供し、災害の影響を受けた地域からデータを収集する機能が含まれる。
UAVの限られた資源、エネルギー予算、厳格なミッション完了時間は、これらの用途にUAVを採用する際の課題を提起している。
論文 参考訳(メタデータ) (2024-01-20T05:05:39Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
無人航空機(UAV)とメタバースの相乗効果は、UAVメタバースと呼ばれる新しいパラダイムを生み出している。
本稿では,UAVメタバースにおける効率的なUTマイグレーションのためのプルーニング技術に基づく,機械学習に基づく小さなゲームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T02:14:13Z) - Reinforcement learning reward function in unmanned aerial vehicle
control tasks [0.0]
報酬関数は、目標に対する簡易な軌道の時間の構成と推定に基づいている。
新たに開発された仮想環境において,報酬関数の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-20T10:32:44Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Learning in the Sky: An Efficient 3D Placement of UAVs [0.8399688944263842]
本稿では,地上のセルネットワークをダウンリンクで支援するUAVの3次元展開のための学習機構を提案する。
この問題は、満足度のあるUAV間での非協調ゲームとしてモデル化されている。
この問題を解決するために,不満足なUAVが学習アルゴリズムに基づいて位置情報を更新する,低複雑性アルゴリズムを用いる。
論文 参考訳(メタデータ) (2020-03-02T15:16:00Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。