論文の概要: Optimal Sparse Regression Trees
- arxiv url: http://arxiv.org/abs/2211.14980v1
- Date: Mon, 28 Nov 2022 00:43:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 19:32:15.891707
- Title: Optimal Sparse Regression Trees
- Title(参考訳): 最適スパース回帰木
- Authors: Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin
- Abstract要約: 本研究は,確率的最適スパース回帰木の構築に対する動的プログラミングとバウンドのアプローチを提案する。
ラベル集合上の1次元におけるk平均クラスタリングアルゴリズムの最適解に基づいて、新しい下界を利用する。
- 参考スコア(独自算出の注目度): 24.03491277969824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regression trees are one of the oldest forms of AI models, and their
predictions can be made without a calculator, which makes them broadly useful,
particularly for high-stakes applications. Within the large literature on
regression trees, there has been little effort towards full provable
optimization, mainly due to the computational hardness of the problem. This
work proposes a dynamic-programming-with-bounds approach to the construction of
provably-optimal sparse regression trees. We leverage a novel lower bound based
on an optimal solution to the k-Means clustering algorithm in 1-dimension over
the set of labels. We are often able to find optimal sparse trees in seconds,
even for challenging datasets that involve large numbers of samples and
highly-correlated features.
- Abstract(参考訳): 回帰木はAIモデルの最も古い形式の1つであり、その予測は電卓なしで行うことができる。
回帰木に関する大規模な文献の中で、問題の計算の難しさから、完全証明可能な最適化への取り組みはほとんどなかった。
本研究は,確率的最適スパース回帰木の構築に対する動的プログラミングとバウンドのアプローチを提案する。
ラベル集合上の1次元におけるk-平均クラスタリングアルゴリズムの最適解に基づく新しい下界を利用する。
数秒で最適なスパースツリーを見つけることがしばしば可能で、大量のサンプルと高い相関性のある機能を含む、挑戦的なデータセットでさえあります。
関連論文リスト
- An improved column-generation-based matheuristic for learning
classification trees [9.07661731728456]
決定木は機械学習(ML)における分類問題の解法として高度に解釈可能なモデルである
決定木を訓練するための標準的なMLアルゴリズムは高速だが、精度の点で最適木を生成する。
citefirat 2020column氏は、意思決定木を学習するためのカラムジェネレーションベースのアプローチを提案した。
論文 参考訳(メタデータ) (2023-08-22T14:43:36Z) - Distributional Adaptive Soft Regression Trees [0.0]
本稿では,多変量ソフトスプリットルールを用いた分布回帰木の新しいタイプを提案する。
ソフトスプリットの大きな利点の1つは、滑らかな高次元函数を1つの木で見積もることができることである。
シミュレーションにより,アルゴリズムは優れた特性を有し,様々なベンチマーク手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T08:59:02Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - bsnsing: A decision tree induction method based on recursive optimal
boolean rule composition [2.28438857884398]
本稿では,決定木帰納過程における分割規則選択を最適化するMIP(Mixed-integer Programming)の定式化を提案する。
商用の解法よりも高速に実例を解くことができる効率的な探索解法を開発した。
論文 参考訳(メタデータ) (2022-05-30T17:13:57Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
本研究では,異なる回帰モデルに対する決定木の一般化性能について検討する。
これにより、アルゴリズムが新しいデータに一般化するために(あるいは作らない)仮定する帰納的バイアスが引き起こされる。
スパース加法モデルに適合する大規模な決定木アルゴリズムに対して、シャープな2乗誤差一般化を低い境界で証明する。
論文 参考訳(メタデータ) (2021-10-18T21:22:40Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
我々は、$tildeO(L5/6 T2/3)$ regretで最適な複雑性に適応するメタアルゴリズムを提案する。
また、メタアルゴリズムは、インスタンス依存の後悔境界を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-11-19T10:00:54Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
様々な目的に対して最適な決定木を生成する手法を提案する。
また,連続変数が存在する場合に最適な結果が得られるスケーラブルなアルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-06-15T19:00:11Z) - ENTMOOT: A Framework for Optimization over Ensemble Tree Models [57.98561336670884]
ENTMOOTは、ツリーモデルをより大きな最適化問題に統合するためのフレームワークである。
ENTMOOTは、ツリーモデルの意思決定とブラックボックス最適化への単純な統合を可能にしていることを示す。
論文 参考訳(メタデータ) (2020-03-10T14:34:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。