論文の概要: Experiments with Optimal Model Trees
- arxiv url: http://arxiv.org/abs/2503.12902v1
- Date: Mon, 17 Mar 2025 08:03:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:23.301618
- Title: Experiments with Optimal Model Trees
- Title(参考訳): 最適モデル木を用いた実験
- Authors: Sabino Francesco Roselli, Eibe Frank,
- Abstract要約: 我々は,世界規模で最適なモデル木が,非常に小さな木と競合する精度を達成できることを示した。
また、古典的最適かつ優雅に成長した決定木、ランダムな森林、およびサポートベクターマシンと比較した。
- 参考スコア(独自算出の注目度): 2.8391355909797644
- License:
- Abstract: Model trees provide an appealing way to perform interpretable machine learning for both classification and regression problems. In contrast to ``classic'' decision trees with constant values in their leaves, model trees can use linear combinations of predictor variables in their leaf nodes to form predictions, which can help achieve higher accuracy and smaller trees. Typical algorithms for learning model trees from training data work in a greedy fashion, growing the tree in a top-down manner by recursively splitting the data into smaller and smaller subsets. Crucially, the selected splits are only locally optimal, potentially rendering the tree overly complex and less accurate than a tree whose structure is globally optimal for the training data. In this paper, we empirically investigate the effect of constructing globally optimal model trees for classification and regression with linear support vector machines at the leaf nodes. To this end, we present mixed-integer linear programming formulations to learn optimal trees, compute such trees for a large collection of benchmark data sets, and compare their performance against greedily grown model trees in terms of interpretability and accuracy. We also compare to classic optimal and greedily grown decision trees, random forests, and support vector machines. Our results show that optimal model trees can achieve competitive accuracy with very small trees. We also investigate the effect on the accuracy of replacing axis-parallel splits with multivariate ones, foregoing interpretability while potentially obtaining greater accuracy.
- Abstract(参考訳): モデルツリーは、分類と回帰の両方の問題に対して解釈可能な機械学習を実行する魅力的な方法を提供する。
葉に一定の値を持つ‘classic’決定ツリーとは対照的に、モデルツリーは、葉ノード内の予測変数の線形結合を使って予測を生成できるため、より正確でより小さな木を実現できる。
モデルツリーをトレーニングデータから学習する典型的なアルゴリズムは、データを小さなサブセットと小さなサブセットに再帰的に分割することで、トップダウンでツリーを成長させる。
重要なことは、選択された分割は局所的にのみ最適であり、潜在的にツリーを過度に複雑にし、トレーニングデータにグローバルに最適な構造を持つ木よりも正確ではない。
本稿では,葉ノードにおける線形支持ベクトルマシンを用いた分類と回帰のために,大域的に最適なモデル木を構築することの効果を実証的に検討する。
この目的のために,混合整数線形プログラミングの定式化を行い,最適な木を学習し,その木をベンチマークデータセットの集合として計算し,その性能を解釈可能性と精度の観点から,優雅に成長したモデル木と比較する。
また、古典的最適かつ優雅に成長した決定木、ランダムな森林、およびサポートベクターマシンと比較した。
その結果, 最適なモデル木は, 非常に小さな木と競合する精度が得られることがわかった。
また, 軸並列分割を多変量スプリットに置き換える精度, 解釈可能性, さらに高い精度が得られる可能性について検討した。
関連論文リスト
- Can a Single Tree Outperform an Entire Forest? [5.448070998907116]
一般的な考え方は、単一の決定木は、テスト精度において古典的なランダムな森林を過小評価する。
本研究では,斜め回帰木の試験精度を大幅に向上させることで,このような考え方に挑戦する。
本手法は,木習熟を非制約最適化タスクとして再編成する。
論文 参考訳(メタデータ) (2024-11-26T00:18:18Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
我々は,木組モデルの解釈可能な表現を開発し,その振る舞いに関する貴重な洞察を提供する。
提案モデルは,木組決定関数を近似した浅い解釈可能な木を得るのに有効である。
論文 参考訳(メタデータ) (2023-02-15T10:43:31Z) - SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series
Forecasting [7.206754802573034]
本稿では,TARモデルと回帰木との密接な関係について検討する。
本研究では,葉のグローバルプール回帰(PR)モデルをトレーニングする,予測固有木アルゴリズムを提案する。
本評価では, 提案した樹木モデルと森林モデルを用いて, 最先端の樹木モデルよりも精度の高い木モデルを提案する。
論文 参考訳(メタデータ) (2022-11-16T04:30:42Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - Exploiting Syntactic Structure for Better Language Modeling: A Syntactic
Distance Approach [78.77265671634454]
我々はマルチタスクの目的、すなわち、モデルが単語を同時に予測し、また「シンタクティック距離」と呼ばれる形態で真実解析木を解析する。
Penn Treebank と Chinese Treebank のデータセットによる実験結果から,地上の真理解析木を追加の訓練信号として提供すると,そのモデルはより低いパープレキシティを実現し,より良い品質で木を誘導できることが示された。
論文 参考訳(メタデータ) (2020-05-12T15:35:00Z) - Sparsity in Optimal Randomized Classification Trees [3.441021278275805]
斜め切断に基づく疎い最適分類木を構築するための連続最適化手法を提案する。
空間性、すなわち局所性と大域性は、多面体ノルムの正規化によってモデル化される。
グリーディーアプローチと異なり、我々の分類精度の一部で容易に取引できる能力は、グローバル・スパシティーの獲得に寄与する。
論文 参考訳(メタデータ) (2020-02-21T09:09:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。