論文の概要: AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning
- arxiv url: http://arxiv.org/abs/2211.15055v2
- Date: Thu, 18 May 2023 07:59:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 20:43:25.762910
- Title: AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning
- Title(参考訳): adatask:マルチタスク学習のためのタスク認識適応学習率アプローチ
- Authors: Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen,
Lei Xiao, Jie Jiang, Guibing Guo
- Abstract要約: このパラメータ上の各タスクの総更新によって、パラメータのタスク支配度を測定する。
本稿では,各タスクの強調勾配と学習率を分離するタスクワイド適応学習率アプローチであるAdaTaskを提案する。
コンピュータビジョンとレコメンダシステムMTLデータセットの実験は、AdaTaskが支配的なタスクのパフォーマンスを大幅に改善することを示した。
- 参考スコア(独自算出の注目度): 19.201899503691266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning (MTL) models have demonstrated impressive results in
computer vision, natural language processing, and recommender systems. Even
though many approaches have been proposed, how well these approaches balance
different tasks on each parameter still remains unclear. In this paper, we
propose to measure the task dominance degree of a parameter by the total
updates of each task on this parameter. Specifically, we compute the total
updates by the exponentially decaying Average of the squared Updates (AU) on a
parameter from the corresponding task.Based on this novel metric, we observe
that many parameters in existing MTL methods, especially those in the higher
shared layers, are still dominated by one or several tasks. The dominance of AU
is mainly due to the dominance of accumulative gradients from one or several
tasks. Motivated by this, we propose a Task-wise Adaptive learning rate
approach, AdaTask in short, to separate the \emph{accumulative gradients} and
hence the learning rate of each task for each parameter in adaptive learning
rate approaches (e.g., AdaGrad, RMSProp, and Adam). Comprehensive experiments
on computer vision and recommender system MTL datasets demonstrate that AdaTask
significantly improves the performance of dominated tasks, resulting SOTA
average task-wise performance. Analysis on both synthetic and real-world
datasets shows AdaTask balance parameters in every shared layer well.
- Abstract(参考訳): マルチタスク学習(MTL)モデルは、コンピュータビジョン、自然言語処理、レコメンダシステムにおいて印象的な結果を示している。
多くのアプローチが提案されているが、それぞれのパラメータでどのように異なるタスクをバランスさせるかはまだ不明である。
本稿では,このパラメータ上の各タスクの総更新によって,パラメータのタスク支配度を測定することを提案する。
具体的には、対応するタスクからパラメータの2乗更新(au)を指数関数的に減少させる平均値で総更新を計算する。この新しいメトリックに基づいて、既存のmtlメソッドの多くのパラメータ、特に高い共有層におけるパラメータが、1つまたは複数のタスクで支配されていることを観測する。
AUの優位は、主に1つまたは複数のタスクからの累積勾配の優位性に起因する。
そこで本研究では,適応学習率のアプローチにおいて,各パラメータに対する各タスクの学習率を<emph{accumulative gradients}>と分離するタスク単位適応学習率アプローチ adatask を提案する。
コンピュータビジョンとレコメンダシステムMTLデータセットに関する総合的な実験は、AdaTaskが支配的なタスクのパフォーマンスを大幅に改善し、SOTAの平均タスク性能が向上することを示した。
合成データと実世界のデータセットの両方の分析は、共有層ごとにadatask balanceパラメータをよく示している。
関連論文リスト
- Pilot: Building the Federated Multimodal Instruction Tuning Framework [79.56362403673354]
本フレームワークは、視覚エンコーダとLCMのコネクタに「アダプタのアダプタ」の2つの段階を統合する。
ステージ1では視覚情報からタスク固有の特徴とクライアント固有の特徴を抽出する。
ステージ2では、クロスタスクインタラクションを実行するために、クロスタスクMixture-of-Adapters(CT-MoA)モジュールを構築します。
論文 参考訳(メタデータ) (2025-01-23T07:49:24Z) - Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
オフラインマルチタスク強化学習(MTRL)の目的は、オンライン環境相互作用を必要とせず、多様なタスクに適用可能な統一されたポリシーを開発することである。
タスクの内容と複雑さの変化は、政策の定式化において重大な課題を引き起こします。
本稿では,各タスクに対するパラメータの最適な調和部分空間を特定するための新しいソリューションであるHarmoDT(Harmony Multi-Task Decision Transformer)を紹介する。
論文 参考訳(メタデータ) (2024-11-02T05:49:14Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
推論計算効率を最適化しつつ,タスク干渉を緩和する新しいマルチタスク学習(MTL)アーキテクチャを提案する。
学習可能なゲーティング機構を用いて、すべてのタスクのパフォーマンスを保ちながら、共有表現とタスク固有の表現を自動的にバランスさせる。
論文 参考訳(メタデータ) (2024-02-26T18:59:52Z) - Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning [39.4348419684885]
マルチタスク学習(MTL)は、複数のタスクを効率的に解決する単一のモデルを学習することを目的としている。
ベイジアン推論を用いた新しい勾配集約手法を提案する。
さまざまなデータセットで,アプローチのメリットを実証的に実証しています。
論文 参考訳(メタデータ) (2024-02-06T14:00:43Z) - VMT-Adapter: Parameter-Efficient Transfer Learning for Multi-Task Dense
Scene Understanding [6.816428690763012]
大規模な事前訓練モデルを活用するための標準的なアプローチは、下流タスクのすべてのモデルパラメータを微調整することである。
本稿では,複数のタスクから知識を共有するVMT-Adapterを提案する。
また、ダウンプロジェクションとアッププロジェクションの間で共有パラメータを学習することで、トレーニング可能なパラメータをさらに削減するVMT-Adapter-Liteを提案する。
論文 参考訳(メタデータ) (2023-12-14T08:25:04Z) - Task Difficulty Aware Parameter Allocation & Regularization for Lifelong
Learning [20.177260510548535]
本稿では,その学習困難度に基づいてパラメータ割り当てと正規化から各タスクに適した戦略を適応的に選択するAllocation & Regularization (PAR)を提案する。
提案手法はスケーラビリティが高く,モデルの冗長性を著しく低減し,モデルの性能を向上する。
論文 参考訳(メタデータ) (2023-04-11T15:38:21Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
マルチタスク学習の研究はコミュニティから大きな注目を集めている。
目覚ましい進歩にもかかわらず、異なるタスクを同時に学習するという課題はまだ検討されていない。
従来の研究は、異なるタスクから勾配を修正しようとするが、これらの手法はタスク間の関係の主観的な仮定を与え、修正された勾配はより正確でないかもしれない。
本稿では,タスク割り当てアプローチによってこの問題に対処する機構であるタスク割当(STA)を紹介し,各サンプルをランダムにタスクのサブセットに割り当てる。
さらなる進展のために、我々は全てのタスクを反復的に割り当てるためにInterleaved Task Allocation(ISTA)を提案する。
論文 参考訳(メタデータ) (2022-03-06T11:57:18Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
MTL(Multi-Task Learning)は、関連するタスク間で表現を共有することで、モデル一般化を強化することを目的としている。
そこで本研究では,異なるデータセットから利用可能な監視信号を活用するために,半教師付きマルチタスク学習(MTL)手法を提案する。
本稿では,データセット間の整合性の問題を軽減するために,様々なアライメントの定式化を施したドメイン認識識別器構造を提案する。
論文 参考訳(メタデータ) (2021-10-14T07:43:39Z) - Instance-Level Task Parameters: A Robust Multi-task Weighting Framework [17.639472693362926]
最近の研究によると、ディープニューラルネットワークは、複数の関連するタスク間で共有表現を学習することで、マルチタスク学習の恩恵を受けている。
トレーニングプロセスは、データセットの各インスタンスに対するタスクの最適な重み付けを規定します。
我々は,SURREALとCityScapesのデータセットを用いて,人間の形状とポーズ推定,深さ推定,セマンティックセグメンテーションタスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-06-11T02:35:42Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。