論文の概要: Task Difficulty Aware Parameter Allocation & Regularization for Lifelong
Learning
- arxiv url: http://arxiv.org/abs/2304.05288v1
- Date: Tue, 11 Apr 2023 15:38:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 14:26:06.366788
- Title: Task Difficulty Aware Parameter Allocation & Regularization for Lifelong
Learning
- Title(参考訳): 生涯学習におけるタスク難易度を考慮したパラメータ割り当てと正規化
- Authors: Wenjin Wang, Yunqing Hu, Qianglong Chen, Yin Zhang
- Abstract要約: 本稿では,その学習困難度に基づいてパラメータ割り当てと正規化から各タスクに適した戦略を適応的に選択するAllocation & Regularization (PAR)を提案する。
提案手法はスケーラビリティが高く,モデルの冗長性を著しく低減し,モデルの性能を向上する。
- 参考スコア(独自算出の注目度): 20.177260510548535
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parameter regularization or allocation methods are effective in overcoming
catastrophic forgetting in lifelong learning. However, they solve all tasks in
a sequence uniformly and ignore the differences in the learning difficulty of
different tasks. So parameter regularization methods face significant
forgetting when learning a new task very different from learned tasks, and
parameter allocation methods face unnecessary parameter overhead when learning
simple tasks. In this paper, we propose the Parameter Allocation &
Regularization (PAR), which adaptively select an appropriate strategy for each
task from parameter allocation and regularization based on its learning
difficulty. A task is easy for a model that has learned tasks related to it and
vice versa. We propose a divergence estimation method based on the
Nearest-Prototype distance to measure the task relatedness using only features
of the new task. Moreover, we propose a time-efficient relatedness-aware
sampling-based architecture search strategy to reduce the parameter overhead
for allocation. Experimental results on multiple benchmarks demonstrate that,
compared with SOTAs, our method is scalable and significantly reduces the
model's redundancy while improving the model's performance. Further qualitative
analysis indicates that PAR obtains reasonable task-relatedness.
- Abstract(参考訳): パラメータ正規化やアロケーション手法は、生涯学習における破滅的な忘れを克服するのに有効である。
しかし、全てのタスクを一様に解決し、異なるタスクの学習困難さの違いを無視する。
したがって、パラメータの正規化メソッドは、学習したタスクと全く異なる新しいタスクを学ぶとき、重要な忘れに直面する。
本稿では,各タスクの学習難易度に基づいて,パラメータ割当と正規化から適切な戦略を適応的に選択するパラメータ割当・正規化(par)を提案する。
タスクは、それに関連するタスクを学んだモデルにとって簡単で、その逆も同様です。
新しいタスクの特徴のみを用いてタスク関連性を測定するため,Nearest-Prototype 距離に基づく分岐推定手法を提案する。
さらに,時間効率に配慮したサンプリング型アーキテクチャ探索手法を提案し,アロケーションのパラメータのオーバーヘッドを低減する。
複数のベンチマークによる実験結果から,SOTAと比較して拡張性が高く,モデルの冗長性を著しく低減し,性能が向上することが示された。
さらなる定性的分析はparが合理的なタスク関連性を得ることを示している。
関連論文リスト
- AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning [19.201899503691266]
このパラメータ上の各タスクの総更新によって、パラメータのタスク支配度を測定する。
本稿では,各タスクの強調勾配と学習率を分離するタスクワイド適応学習率アプローチであるAdaTaskを提案する。
コンピュータビジョンとレコメンダシステムMTLデータセットの実験は、AdaTaskが支配的なタスクのパフォーマンスを大幅に改善することを示した。
論文 参考訳(メタデータ) (2022-11-28T04:24:38Z) - DiSparse: Disentangled Sparsification for Multitask Model Compression [92.84435347164435]
DiSparseは、シンプルで効果的で、第一級のマルチタスクプルーニングとスパーストレーニングスキームである。
実験の結果,様々な設定や設定において優れた性能を示した。
論文 参考訳(メタデータ) (2022-06-09T17:57:46Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Instance-Level Task Parameters: A Robust Multi-task Weighting Framework [17.639472693362926]
最近の研究によると、ディープニューラルネットワークは、複数の関連するタスク間で共有表現を学習することで、マルチタスク学習の恩恵を受けている。
トレーニングプロセスは、データセットの各インスタンスに対するタスクの最適な重み付けを規定します。
我々は,SURREALとCityScapesのデータセットを用いて,人間の形状とポーズ推定,深さ推定,セマンティックセグメンテーションタスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-06-11T02:35:42Z) - TAG: Task-based Accumulated Gradients for Lifelong learning [21.779858050277475]
タスク間の関連性に基づいて学習率を適応させるタスク認識システムを提案する。
提案する適応学習率は, 破滅的な記憶の喪失だけでなく, 正の後方移動にも寄与することを示した。
論文 参考訳(メタデータ) (2021-05-11T16:10:32Z) - Efficient Continual Adaptation for Generative Adversarial Networks [97.20244383723853]
GAN(Generative Adversarial Network)に対する連続学習手法を提案する。
我々のアプローチは、グローバルパラメータとタスク固有のパラメータのセットを学習することに基づいている。
機能マップ変換に基づくアプローチは,最先端のgans手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-06T05:09:37Z) - Parameter-Efficient Transfer Learning with Diff Pruning [108.03864629388404]
diff pruningは、プリトレイン・ファインチューンフレームワーク内でパラメータ効率の高い転送学習を可能にするシンプルなアプローチです。
diff pruningで微調整されたモデルは、GLUEベンチマークで完全に微調整されたベースラインのパフォーマンスと一致します。
論文 参考訳(メタデータ) (2020-12-14T12:34:01Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - The Sample Complexity of Meta Sparse Regression [38.092179552223364]
本稿では,無限タスクによる疎線形回帰におけるメタラーニング問題に対処する。
T in O ((k log(p) ) /l ) タスクが全タスクの共通サポートを回復するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-02-22T00:59:53Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
本稿では,タスクがサブタスクグラフによって特徴づけられるような,新しい数発のRL問題を提案し,対処する。
メタ政治を直接学習する代わりに、Subtask Graph Inferenceを使ったメタラーナーを開発した。
実験の結果,2つのグリッドワールド領域とStarCraft II環境において,提案手法が潜在タスクパラメータを正確に推定できることが確認された。
論文 参考訳(メタデータ) (2020-01-01T17:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。