論文の概要: MixFairFace: Towards Ultimate Fairness via MixFair Adapter in Face
Recognition
- arxiv url: http://arxiv.org/abs/2211.15181v1
- Date: Mon, 28 Nov 2022 09:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 18:49:24.896775
- Title: MixFairFace: Towards Ultimate Fairness via MixFair Adapter in Face
Recognition
- Title(参考訳): mixfairface:mixfairアダプタによる顔認識による究極の公平性の実現
- Authors: Fu-En Wang, Chien-Yi Wang, Min Sun, Shang-Hong Lai
- Abstract要約: 属性に基づくフェアネス尺度は顔認識には適さないと我々は主張する。
本稿では,異なるアプローチの公平性を評価するための新しい評価プロトコルを提案する。
私たちのMixFairFaceアプローチは、すべてのベンチマークデータセットで最先端のフェアネスパフォーマンスを実現しています。
- 参考スコア(独自算出の注目度): 37.756287362799945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although significant progress has been made in face recognition, demographic
bias still exists in face recognition systems. For instance, it usually happens
that the face recognition performance for a certain demographic group is lower
than the others. In this paper, we propose MixFairFace framework to improve the
fairness in face recognition models. First of all, we argue that the commonly
used attribute-based fairness metric is not appropriate for face recognition. A
face recognition system can only be considered fair while every person has a
close performance. Hence, we propose a new evaluation protocol to fairly
evaluate the fairness performance of different approaches. Different from
previous approaches that require sensitive attribute labels such as race and
gender for reducing the demographic bias, we aim at addressing the identity
bias in face representation, i.e., the performance inconsistency between
different identities, without the need for sensitive attribute labels. To this
end, we propose MixFair Adapter to determine and reduce the identity bias of
training samples. Our extensive experiments demonstrate that our MixFairFace
approach achieves state-of-the-art fairness performance on all benchmark
datasets.
- Abstract(参考訳): 顔認識では大きな進歩があったが、顔認識システムにはまだ人口統計バイアスが存在する。
例えば、ある人口集団の顔認識性能が他の集団よりも低い場合が普通である。
本稿では,顔認識モデルの公平性を改善するためのmixfairfaceフレームワークを提案する。
まず、一般的に使用される属性ベースの公正度メトリクスは、顔認識には適さないと主張する。
顔認識システムは、すべての人が近いパフォーマンスを持っている間のみ公平であると考えられる。
そこで我々は,異なるアプローチの公平性を評価するための新しい評価プロトコルを提案する。
人種や性別といった機密性の高い属性ラベルを必要とする従来のアプローチとは異なり、顔表現におけるアイデンティティバイアス、すなわち、機密属性ラベルを必要とせず、異なるアイデンティティ間のパフォーマンスの不一貫性に対処することを目的としている。
そこで本研究では,トレーニングサンプルの同一性バイアスを判定し低減するためのmixfairアダプタを提案する。
広範な実験により,当社のmixfairfaceアプローチが,すべてのベンチマークデータセットで最先端のフェアネス性能を実現することを実証した。
関連論文リスト
- LabellessFace: Fair Metric Learning for Face Recognition without Attribute Labels [0.11999555634662631]
本稿では,グループラベリングを必要とせず,顔認識における階層バイアスを改善するフレームワークであるLabellessFace'を紹介する。
本稿では,特定のクラスに対する好意度を評価するための,クラス好意度と呼ばれる新しいフェアネス向上尺度を提案する。
本手法は,クラス嗜好レベルに基づいて学習パラメータを動的に調整し,属性間の公平性を促進させる。
論文 参考訳(メタデータ) (2024-09-14T02:56:07Z) - FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features [3.9440964696313485]
自動的な顔属性分類アルゴリズムでは、人口統計バイアスの存在が強調されている。
既存のバイアス緩和技術は、一般に人口統計学的なアノテーションを必要とし、しばしば公正性と正確性の間のトレードオフを得る。
そこで本稿では, 顔属性の公平な分類法を, きめ細かな分類問題とみなして提案する。
論文 参考訳(メタデータ) (2024-08-29T20:08:22Z) - Score Normalization for Demographic Fairness in Face Recognition [16.421833444307232]
有名なサンプル中心スコア正規化技術であるZ-normとT-normは、高セキュリティ動作点の公平性を向上しない。
標準Z/Tノルムを拡張し、正規化における人口統計情報を統合する。
本手法は,5つの最先端の顔認識ネットワークの全体的な公正性を改善する。
論文 参考訳(メタデータ) (2024-07-19T07:51:51Z) - Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) は広く応用されている。
従来の手法で訓練されたFACモデルは、様々なデータサブポピュレーションにまたがる精度の不整合を示すことによって不公平である可能性がある。
本研究は,付加アノテーションなしでバイアスデータ上で公正なFACモデルをトレーニングするための,新しい世代ベースの2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-11T10:50:53Z) - The Impact of Racial Distribution in Training Data on Face Recognition
Bias: A Closer Look [0.0]
トレーニングデータにおける人種分布が顔認識モデルの性能に及ぼす影響について検討する。
精度メトリクス、クラスタリングメトリクス、UMAPプロジェクション、顔の品質、決定しきい値を用いて、これらのトレーニングされたモデルを解析する。
論文 参考訳(メタデータ) (2022-11-26T07:03:24Z) - Meta Balanced Network for Fair Face Recognition [51.813457201437195]
我々は、データとアルゴリズムの両方の側面からバイアスを体系的に科学的に研究する。
本稿では,メタバランスネットワーク(MBN)と呼ばれるメタ学習アルゴリズムを提案する。
大規模な実験により、MBNは偏見を緩和し、顔認識において異なる肌のトーンを持つ人々に対してよりバランスの取れたパフォーマンスを学ぶことができた。
論文 参考訳(メタデータ) (2022-05-13T10:25:44Z) - Learning Fair Face Representation With Progressive Cross Transformer [79.73754444296213]
フェアフェイス認識のためのプログレッシブクロストランス (PCT) 手法を提案する。
我々は,PCTが最先端FR性能を達成しつつ,顔認識におけるバイアスを軽減することができることを示した。
論文 参考訳(メタデータ) (2021-08-11T01:31:14Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
この研究は、全てのグループの顔がより平等に表現できる公正な顔表現を学ぶことを目的としている。
我々の研究は、競争精度を維持しながら、人口集団間での顔認識バイアスを軽減することができる。
論文 参考訳(メタデータ) (2020-06-13T06:43:37Z) - Post-Comparison Mitigation of Demographic Bias in Face Recognition Using
Fair Score Normalization [15.431761867166]
顔認識におけるバイアスの影響を低減するために,教師なしのフェアスコア正規化手法を提案する。
我々の解決策は、性別を考慮した場合の人口バイアスを最大82.7%削減する。
従来の研究とは対照的に、我々の公正な正規化アプローチは、偽一致率0.001で53.2%、偽一致率0.00001で82.9%まで全体の性能を向上させる。
論文 参考訳(メタデータ) (2020-02-10T08:17:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。