論文の概要: LabellessFace: Fair Metric Learning for Face Recognition without Attribute Labels
- arxiv url: http://arxiv.org/abs/2409.09274v1
- Date: Sat, 14 Sep 2024 02:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:38:57.129670
- Title: LabellessFace: Fair Metric Learning for Face Recognition without Attribute Labels
- Title(参考訳): LabellessFace: 属性ラベルのない顔認識のための公正なメトリック学習
- Authors: Tetsushi Ohki, Yuya Sato, Masakatsu Nishigaki, Koichi Ito,
- Abstract要約: 本稿では,グループラベリングを必要とせず,顔認識における階層バイアスを改善するフレームワークであるLabellessFace'を紹介する。
本稿では,特定のクラスに対する好意度を評価するための,クラス好意度と呼ばれる新しいフェアネス向上尺度を提案する。
本手法は,クラス嗜好レベルに基づいて学習パラメータを動的に調整し,属性間の公平性を促進させる。
- 参考スコア(独自算出の注目度): 0.11999555634662631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Demographic bias is one of the major challenges for face recognition systems. The majority of existing studies on demographic biases are heavily dependent on specific demographic groups or demographic classifier, making it difficult to address performance for unrecognised groups. This paper introduces ``LabellessFace'', a novel framework that improves demographic bias in face recognition without requiring demographic group labeling typically required for fairness considerations. We propose a novel fairness enhancement metric called the class favoritism level, which assesses the extent of favoritism towards specific classes across the dataset. Leveraging this metric, we introduce the fair class margin penalty, an extension of existing margin-based metric learning. This method dynamically adjusts learning parameters based on class favoritism levels, promoting fairness across all attributes. By treating each class as an individual in facial recognition systems, we facilitate learning that minimizes biases in authentication accuracy among individuals. Comprehensive experiments have demonstrated that our proposed method is effective for enhancing fairness while maintaining authentication accuracy.
- Abstract(参考訳): 画像バイアスは顔認識システムにおける大きな課題の1つだ。
人口統計バイアスに関する既存の研究の大部分は、特定の人口統計学的グループや人口統計学的分類に大きく依存しているため、認識されていない集団のパフォーマンスに対処することは困難である。
本稿では,「LabellessFace'」について紹介する。これは,フェアネスの考慮に通常必要となる人口集団のラベル付けを必要とせずに,顔認識における人口バイアスを改善する新しいフレームワークである。
そこで本研究では,データセット全体にわたる特定のクラスに対する好意の度合いを評価できる,クラス好意度レベルと呼ばれる新しいフェアネス向上尺度を提案する。
このメトリクスを活用することで、既存のマージンベースのメトリック学習の拡張であるフェアクラスマージンペナルティを導入する。
本手法は,クラス嗜好レベルに基づいて学習パラメータを動的に調整し,属性間の公平性を促進させる。
顔認識システムでは,各クラスを個人として扱うことにより,個人間の認証精度のバイアスを最小限に抑える学習を容易にする。
総合的な実験により,本手法は認証精度を維持しながら公平性を高めるのに有効であることが示された。
関連論文リスト
- FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features [3.9440964696313485]
自動的な顔属性分類アルゴリズムでは、人口統計バイアスの存在が強調されている。
既存のバイアス緩和技術は、一般に人口統計学的なアノテーションを必要とし、しばしば公正性と正確性の間のトレードオフを得る。
そこで本稿では, 顔属性の公平な分類法を, きめ細かな分類問題とみなして提案する。
論文 参考訳(メタデータ) (2024-08-29T20:08:22Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - MixFairFace: Towards Ultimate Fairness via MixFair Adapter in Face
Recognition [37.756287362799945]
属性に基づくフェアネス尺度は顔認識には適さないと我々は主張する。
本稿では,異なるアプローチの公平性を評価するための新しい評価プロトコルを提案する。
私たちのMixFairFaceアプローチは、すべてのベンチマークデータセットで最先端のフェアネスパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-11-28T09:47:21Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
この研究は、全てのグループの顔がより平等に表現できる公正な顔表現を学ぶことを目的としている。
我々の研究は、競争精度を維持しながら、人口集団間での顔認識バイアスを軽減することができる。
論文 参考訳(メタデータ) (2020-06-13T06:43:37Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z) - SensitiveLoss: Improving Accuracy and Fairness of Face Representations
with Discrimination-Aware Deep Learning [17.088716485755917]
偏見認識アルゴリズムの精度と公平性を改善するための識別認識学習法を提案する。
実験により、最もよく使われている顔データベースに基づく学習プロセスが、アルゴリズムによる識別の強い、一般的な訓練済みの深層顔モデルに繋がったことを示す。
提案手法は,事前学習ネットワークへのアドオンとして機能し,平均精度と公平性の観点から性能向上に有効である。
論文 参考訳(メタデータ) (2020-04-22T10:32:16Z) - A survey of bias in Machine Learning through the prism of Statistical
Parity for the Adult Data Set [5.277804553312449]
偏見を自動決定にどのように導入できるかを理解することの重要性を示す。
まず、公正学習問題、特に二項分類設定における数学的枠組みについて述べる。
そこで,本研究では,現実およびよく知られた成人所得データセットの標準差分効果指標を用いて,偏見の有無を定量化することを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。