論文の概要: Progressive Learning without Forgetting
- arxiv url: http://arxiv.org/abs/2211.15215v1
- Date: Mon, 28 Nov 2022 10:53:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 16:34:33.153304
- Title: Progressive Learning without Forgetting
- Title(参考訳): 忘れずにプログレッシブな学習
- Authors: Tao Feng, Hangjie Yuan, Mang Wang, Ziyuan Huang, Ang Bian, Jianzhou
Zhang
- Abstract要約: 連続学習(CL)のパラダイムにおける2つの課題に焦点をあてる。
PLwFは従来のタスクから関数を導入し、各タスクの最も信頼できる知識を含む知識空間を構築する。
信用割当は、投射を通して勾配の衝突を取り除くことによって、綱引きのダイナミクスを制御する。
他のCL法と比較して,生データに頼らずとも,優れた結果が得られている。
- 参考スコア(独自算出の注目度): 8.563323015260709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from changing tasks and sequential experience without forgetting the
obtained knowledge is a challenging problem for artificial neural networks. In
this work, we focus on two challenging problems in the paradigm of Continual
Learning (CL) without involving any old data: (i) the accumulation of
catastrophic forgetting caused by the gradually fading knowledge space from
which the model learns the previous knowledge; (ii) the uncontrolled tug-of-war
dynamics to balance the stability and plasticity during the learning of new
tasks. In order to tackle these problems, we present Progressive Learning
without Forgetting (PLwF) and a credit assignment regime in the optimizer. PLwF
densely introduces model functions from previous tasks to construct a knowledge
space such that it contains the most reliable knowledge on each task and the
distribution information of different tasks, while credit assignment controls
the tug-of-war dynamics by removing gradient conflict through projection.
Extensive ablative experiments demonstrate the effectiveness of PLwF and credit
assignment. In comparison with other CL methods, we report notably better
results even without relying on any raw data.
- Abstract(参考訳): 得られた知識を忘れずにタスクの変更やシーケンシャルな経験から学ぶことは、ニューラルネットワークにとって難しい問題である。
本研究では,従来のデータを含まない連続学習(CL)のパラダイムにおいて,2つの課題に焦点をあてる。
(i)モデルがそれまでの知識を学習する段階的な知識空間によって引き起こされる破滅的な記憶の蓄積
(ii)新しい課題の学習における安定性と可塑性のバランスをとるための無制御の綱引き力学。
これらの問題に対処するため、我々はPLwF(Progressive Learning without Forgetting)と、オプティマイザの信用割当制度を提示する。
PLwFは、従来のタスクからモデル関数を導入し、各タスクに関する最も信頼性の高い知識と異なるタスクの分布情報を含む知識空間を構築する。
広範囲なアブレーション実験は、PLwFとクレジット割り当ての有効性を示す。
他のCL法と比較して,生データに頼らずとも,優れた結果が得られている。
関連論文リスト
- Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
強化学習のロボット制御のような現実世界の応用では、タスクが変化し、新しいタスクが順次発生する。
この状況は、タスクの変更に適応し、獲得した知識を保持するエージェントを訓練する上で、可塑性-安定トレードオフという新たな課題を生じさせる。
本研究では,連続拡散器(Continuous diffuser,CoD)と呼ばれるリハーサルに基づく連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-09-04T08:21:47Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Recall-Oriented Continual Learning with Generative Adversarial
Meta-Model [5.710971447109951]
本稿では,安定性・塑性ジレンマに対処するリコール指向連続学習フレームワークを提案する。
人間の脳が安定性と可塑性のメカニズムを分離する能力に触発されて、私たちのフレームワークは2段階のアーキテクチャで構成されています。
我々は,新たな知識を効果的に学習するだけでなく,従来の知識の安定性も高いことを示す。
論文 参考訳(メタデータ) (2024-03-05T16:08:59Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Online Continual Learning via the Knowledge Invariant and Spread-out
Properties [4.109784267309124]
継続的な学習の鍵となる課題は破滅的な忘れ方だ。
知識不変性とスプレッドアウト特性(OCLKISP)を用いたオンライン連続学習法を提案する。
提案手法を,CIFAR 100, Split SVHN, Split CUB200, Split Tiny-Image-Netの4つのベンチマークで実証的に評価した。
論文 参考訳(メタデータ) (2023-02-02T04:03:38Z) - Beyond Not-Forgetting: Continual Learning with Backward Knowledge
Transfer [39.99577526417276]
継続学習(CL)では、エージェントは、新しいタスクと古いタスクの両方の学習性能を向上させることができる。
既存のCL手法の多くは、古いタスクに対する学習モデルの修正を最小化することによって、ニューラルネットワークの破滅的な忘れに対処することに焦点を当てている。
データ再生のない固定容量ニューラルネットワークに対して,バックワードノウルEdge tRansfer (CUBER) を用いた新しいCL法を提案する。
論文 参考訳(メタデータ) (2022-11-01T23:55:51Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
本稿では,2段階の学習フレームワークである経験連続再生(ERR)を提案する。
ERRは、すべてのベースラインの性能を一貫して改善し、現在の最先端の手法を超えることができる。
論文 参考訳(メタデータ) (2021-12-31T12:05:22Z) - Mixture-of-Variational-Experts for Continual Learning [0.0]
学習と忘れのトレードオフを促進する最適原理を提案する。
我々はMixture-of-Variational-Experts (MoVE)と呼ばれる連続学習のためのニューラルネットワーク層を提案する。
MNISTおよびCIFAR10データセットの変種に関する実験は、MoVE層の競合性能を示す。
論文 参考訳(メタデータ) (2021-10-25T06:32:06Z) - Bilevel Continual Learning [76.50127663309604]
BCL(Bilevel Continual Learning)という,継続的学習の新たな枠組みを提案する。
連続学習ベンチマーク実験では,多くの最先端手法と比較して,提案したBCLの有効性が示された。
論文 参考訳(メタデータ) (2020-07-30T16:00:23Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
クラスインクリメンタルラーニング(Class-IL)における破滅的忘れの問題について検討する。
クラスILの訓練手順では、モデルが次のタスクについて知識を持っていないため、これまで学習してきたタスクに必要な特徴のみを抽出し、その情報は共同分類に不十分である。
本稿では,ラベルを必要とせずに効果的な表現を提供する自己教師型学習と,この問題を回避するためのクラスILを組み合わせることを提案する。
論文 参考訳(メタデータ) (2020-06-10T15:15:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。