論文の概要: Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization
- arxiv url: http://arxiv.org/abs/2309.08546v3
- Date: Wed, 24 Jul 2024 10:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 19:50:07.373411
- Title: Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization
- Title(参考訳): ベイズ適応モーメント正規化によるロバスト連続学習に向けて
- Authors: Jack Foster, Alexandra Brintrup,
- Abstract要約: 継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 51.34904967046097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The pursuit of long-term autonomy mandates that machine learning models must continuously adapt to their changing environments and learn to solve new tasks. Continual learning seeks to overcome the challenge of catastrophic forgetting, where learning to solve new tasks causes a model to forget previously learnt information. Prior-based continual learning methods are appealing as they are computationally efficient and do not require auxiliary models or data storage. However, prior-based approaches typically fail on important benchmarks and are thus limited in their potential applications compared to their memory-based counterparts. We introduce Bayesian adaptive moment regularization (BAdam), a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting. Our method boasts a range of desirable properties such as being lightweight and task label-free, converging quickly, and offering calibrated uncertainty that is important for safe real-world deployment. Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments such as Split MNIST and Split FashionMNIST, and does so without relying on task labels or discrete task boundaries.
- Abstract(参考訳): 長期的な自律性の追求は、機械学習モデルが変化する環境に継続的に適応し、新しいタスクの解決を学ぶことを義務付ける。
継続的な学習は破滅的な忘れ込みという課題を克服しようと試み、そこでは新しいタスクを解くための学習が、モデルが以前に学習した情報を忘れる原因となる。
従来の連続学習手法は、計算効率が良く、補助モデルやデータストレージを必要としないため、魅力的である。
しかし、従来のアプローチは重要なベンチマークでは失敗し、メモリベースのアプローチに比べて潜在的なアプリケーションでは制限される。
ベイズ適応モーメント正規化(BAdam)は,パラメータ成長の抑制を図り,破滅的な忘れを減らし,新しい事前手法である。
提案手法は,軽量でタスクラベルのない,短時間で収束する,安全な実世界展開に重要なキャリブレーションされた不確実性など,さまざまな望ましい特性を備えている。
その結果, BAdamは, Split MNIST や Split FashionMNIST のような単頭クラスインクリメンタルな実験に挑戦し, タスクラベルや個別のタスク境界に頼らずに, 先行手法の最先端性能を実現していることがわかった。
関連論文リスト
- Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
ディープラーニングモデルを非定常環境に適用することの本質的な困難さは、ニューラルネットワークの実際のタスクへの適用性を制限している。
ネットワークの事前学習部分の更新を回避し、通常の分類ヘッドだけでなく、新たに導入した学習可能なパラメータのセットも学習することで、微調整手順をより効果的にするための新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-06-05T15:11:59Z) - Class-Incremental Learning by Knowledge Distillation with Adaptive
Feature Consolidation [39.97128550414934]
本稿では,ディープニューラルネットワークに基づく新しいクラスインクリメンタル学習手法を提案する。
以前のタスクの例を格納するためのメモリが限られている新しいタスクを継続的に学習する。
我々のアルゴリズムは知識蒸留に基づいており、古いモデルの表現を維持するための原則的な方法を提供する。
論文 参考訳(メタデータ) (2022-04-02T16:30:04Z) - Center Loss Regularization for Continual Learning [0.0]
一般的に、ニューラルネットワークには、さまざまなタスクを逐次学習する能力がない。
提案手法では,従来のタスクに近い新しいタスクの表現を投影することで,古いタスクを記憶する。
提案手法は,最先端の継続的学習手法と比較して,スケーラブルで効果的で,競争力のある性能を示す。
論文 参考訳(メタデータ) (2021-10-21T17:46:44Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
我々は情報理論のレンズを通して連続学習過程を研究する。
モデルパラメータの情報利得を維持するビットレベル情報保存(BLIP)を提案する。
BLIPは、連続的な学習を通してメモリオーバーヘッドを一定に保ちながら、ほとんど忘れることができない。
論文 参考訳(メタデータ) (2021-05-10T15:09:01Z) - Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding
Meta-Amortization Error [50.83356836818667]
循環型アニーリングスケジュールとMMD基準を用いた新しいメタレギュラー化目標を構築した。
実験の結果,本手法は標準的なメタ学習アルゴリズムよりもかなり優れていることがわかった。
論文 参考訳(メタデータ) (2020-03-04T04:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。