論文の概要: Establishment of Neural Networks Robust to Label Noise
- arxiv url: http://arxiv.org/abs/2211.15279v3
- Date: Mon, 24 Apr 2023 02:43:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 23:19:47.046895
- Title: Establishment of Neural Networks Robust to Label Noise
- Title(参考訳): ラベルノイズに頑健なニューラルネットワークの確立
- Authors: Pengwei Yang, Chongyangzi Teng and Jack George Mangos
- Abstract要約: 本稿では,関連ラベルノイズ手法の基本概念について検討した。
遷移行列推定器が作成され、実際の遷移行列に対する効果が示されている。
複雑な畳み込みニューラルネットワークモデルを正しく調整できないため、遷移行列ノイズ補正が堅牢性向上に与える影響を効率よく示すことはできない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Label noise is a significant obstacle in deep learning model training. It can
have a considerable impact on the performance of image classification models,
particularly deep neural networks, which are especially susceptible because
they have a strong propensity to memorise noisy labels. In this paper, we have
examined the fundamental concept underlying related label noise approaches. A
transition matrix estimator has been created, and its effectiveness against the
actual transition matrix has been demonstrated. In addition, we examined the
label noise robustness of two convolutional neural network classifiers with
LeNet and AlexNet designs. The two FashionMINIST datasets have revealed the
robustness of both models. We are not efficiently able to demonstrate the
influence of the transition matrix noise correction on robustness enhancements
due to our inability to correctly tune the complex convolutional neural network
model due to time and computing resource constraints. There is a need for
additional effort to fine-tune the neural network model and explore the
precision of the estimated transition model in future research.
- Abstract(参考訳): ラベルノイズはディープラーニングモデルのトレーニングにおいて重要な障害である。
これは画像分類モデル、特にディープニューラルネットワークの性能に大きな影響を与える可能性がある。
本稿では,関連ラベルノイズ手法の基本概念について検討した。
遷移行列推定器が作成され、実際の遷移行列に対する効果が実証されている。
さらに,2つの畳み込みニューラルネットワーク分類器のラベル雑音耐性をLeNetとAlexNetの設計を用いて検討した。
2つのFashionMINISTデータセットは、両方のモデルの堅牢性を明らかにしている。
我々は、時間と計算資源の制約により複雑な畳み込みニューラルネットワークモデルを正しく調整できないため、遷移行列ノイズ補正が堅牢性向上に与える影響を効率的に示すことができない。
今後の研究において、ニューラルネットワークモデルを微調整し、推定遷移モデルの精度を探求する追加の努力が必要である。
関連論文リスト
- Ambiguity in solving imaging inverse problems with deep learning based
operators [0.0]
大規模な畳み込みニューラルネットワークは、画像分解のためのツールとして広く利用されている。
画像の劣化は, 逆問題として数学的にモデル化され, ノイズがデータに与える影響を近似することは困難である。
本稿では,深層学習に基づく画像の復号化に多くの精度を損なうことなく,安定性を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T12:07:08Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - A Study of Deep CNN Model with Labeling Noise Based on Granular-ball
Computing [0.0]
グラニュラーボールコンピューティングは効率的で堅牢でスケーラブルな学習方法である。
本稿では,モデル学習において,多粒性ラベルノイズサンプルをフィルタするグラニュラーニューラルネットワークモデルを考案した。
論文 参考訳(メタデータ) (2022-07-17T13:58:46Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning to Rectify for Robust Learning with Noisy Labels [25.149277009932423]
分類ネットワークのトレーニング手順を適応的に修正するためのワープ確率推論(WarPI)を提案する。
雑音ラベルによる頑健な学習の4つのベンチマークでWarPIを評価し, 異種雑音下での新たな最先端の学習を実現する。
論文 参考訳(メタデータ) (2021-11-08T02:25:50Z) - Robust Learning of Recurrent Neural Networks in Presence of Exogenous
Noise [22.690064709532873]
入力雑音を受けるRNNモデルに対するトラクタブルロバストネス解析を提案する。
線形化手法を用いてロバストネス測度を効率的に推定することができる。
提案手法はリカレントニューラルネットワークのロバスト性を大幅に改善する。
論文 参考訳(メタデータ) (2021-05-03T16:45:05Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
本稿では,ノイズを考慮したエンコーダ・デコーダ・フレームワークを提案する。
提案モデルはニューラルネットワークによってパラメータ化された2つのサブモデルから構成される。
論文 参考訳(メタデータ) (2020-07-23T18:47:36Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM加速器は、しばしば物理的成分の固有のノイズに悩まされる。
雑音設定に対してロバストなニューラルネットワーク性能を実現するためのノイズ非依存手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T06:51:28Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。