論文の概要: Tuning-free Plug-and-Play Hyperspectral Image Deconvolution with Deep
Priors
- arxiv url: http://arxiv.org/abs/2211.15307v1
- Date: Mon, 28 Nov 2022 13:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 20:17:01.288353
- Title: Tuning-free Plug-and-Play Hyperspectral Image Deconvolution with Deep
Priors
- Title(参考訳): 深い優先順位を持つ調整不要なプラグアンドプレイハイパースペクトル画像デコンボリューション
- Authors: Xiuheng Wang, Jie Chen, C\'edric Richard
- Abstract要約: HSIデコンボリューションのためのチューニング不要なPlug-and-Playアルゴリズムを提案する。
具体的には、交互方向乗算器(ADMM)を用いて問題を2つの反復的部分確率に分解する。
フレキシブルブラインド3Dデノナイジングネットワーク(B3DDN)は、より深い事前学習と、異なるノイズレベルを持つデノナイジングサブプロブレムの解決を目的として設計されている。
- 参考スコア(独自算出の注目度): 6.0622962428871885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deconvolution is a widely used strategy to mitigate the blurring and noisy
degradation of hyperspectral images~(HSI) generated by the acquisition devices.
This issue is usually addressed by solving an ill-posed inverse problem. While
investigating proper image priors can enhance the deconvolution performance, it
is not trivial to handcraft a powerful regularizer and to set the
regularization parameters. To address these issues, in this paper we introduce
a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution.
Specifically, we use the alternating direction method of multipliers (ADMM) to
decompose the optimization problem into two iterative sub-problems. A flexible
blind 3D denoising network (B3DDN) is designed to learn deep priors and to
solve the denoising sub-problem with different noise levels. A measure of 3D
residual whiteness is then investigated to adjust the penalty parameters when
solving the quadratic sub-problems, as well as a stopping criterion.
Experimental results on both simulated and real-world data with ground-truth
demonstrate the superiority of the proposed method.
- Abstract(参考訳): デコンボリューション(deconvolution)は、取得装置が生成するハイパースペクトル画像~(hsi)のぼやけやノイズを軽減するために広く用いられる戦略である。
この問題は通常、不適切な逆問題を解くことで解決される。
適切な画像プリエントを調べることでデコンボリューション性能が向上するが、強力な正規化器を手作りし、正規化パラメータを設定することは自明ではない。
本稿では,これらの問題に対処するため,hsiデコンボリューションのためのチューニングフリープラグアンドプレイ(pnp)アルゴリズムを提案する。
具体的には、乗算器の交互方向法(ADMM)を用いて最適化問題を2つの反復部分確率に分解する。
フレキシブルブラインド3dデノイジングネットワーク(b3ddn)は、より深い事前学習と、異なるノイズレベルでデノイジングサブ問題を解くために設計されている。
次に、3次元残留白度の測定を行い、二次部分問題を解く際のペナルティパラメータと停止基準を調整する。
実地データと実地データの両方における実験結果から,提案手法の優位性が示された。
関連論文リスト
- Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems [61.85478918618346]
本稿では,従来のディープイメージに形式的な接続を導入することで,最近のSCD適応法を一般化するDDIPを提案する。
本稿では,D3IPと呼ばれる3次元計測のための効率的な適応手法を提案し,DDIPを桁違いに高速化する。
本手法は, 学習対象とは大きく異なるファントム画像のみを用いて, 事前学習した生成的画像から多種多様な3次元再構成タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2024-07-15T12:00:46Z) - Hyperspectral Band Selection based on Generalized 3DTV and Tensor CUR Decomposition [8.812294191190896]
ハイパースペクトルイメージングはリモートセンシングにおいて重要な技術である。
高次元とデータボリュームは、重大な計算上の課題を生じさせる。
データを低ランクで滑らかな成分とスパース成分に分解することで,新しいスペクトル帯域選択モデルを提案する。
論文 参考訳(メタデータ) (2024-05-02T02:23:38Z) - Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
シングルパターンプロジェクション(ワンショット3Dスキャン)を用いたアクティブステレオ技術は、産業や医療目的などから広く注目を集めている。
ワンショット3Dスキャンの深刻な欠点はスパース再構成である。
パターンが正規かつ周期的であれば,任意のタイプの静的パターンに適用可能なワンショットスキャンのための画素ワイズ手法を提案する。
論文 参考訳(メタデータ) (2023-09-26T10:45:04Z) - Unfolding Framework with Prior of Convolution-Transformer Mixture and
Uncertainty Estimation for Video Snapshot Compressive Imaging [7.601695814245209]
本稿では, 連続する高速フレームを異なるマスクで変調し, 単一の計測でキャプチャする, ビデオスナップショット圧縮画像(SCI)の問題点について考察する。
最適化アルゴリズムとニューラルネットワークを組み合わせることで、ディープ・アンフォールディング・ネットワーク(DUN)は、逆問題の解決において大きな成果を上げた。
論文 参考訳(メタデータ) (2023-06-20T06:25:48Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
非視線イメージング(NLOS)は、視線で測定されたデータから3次元の隠れたシーンを再構築することを目的としている。
曲率正規化に基づく新しいNLOS再構成モデルを提案する。
提案したアルゴリズムを,合成データセットと実データセットの両方で評価する。
論文 参考訳(メタデータ) (2023-01-01T14:10:43Z) - Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online
Adaptation [87.85851771425325]
我々は、人間のメッシュ再構成モデルをドメイン外ストリーミングビデオに適用する際の新しい問題を考える。
オンライン適応によってこの問題に対処し、テスト中のモデルのバイアスを徐々に修正します。
動的バイレベルオンライン適応アルゴリズム(DynaBOA)を提案する。
論文 参考訳(メタデータ) (2021-11-07T07:23:24Z) - Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for
Image Restoration [54.23646128082018]
非定常雑音分散のパラメータ化が可能なデノイザを使用するために、プラグアンドプレイの最適化の概念を拡張した。
画素調整可能なデノイザは,適切なプレコンディショニング戦略とともに,いくつかのアプリケーションに対して,プラグアンドプレイADMMアプローチをさらに改善できることを示す。
論文 参考訳(メタデータ) (2021-10-01T15:46:35Z) - On Measuring and Controlling the Spectral Bias of the Deep Image Prior [63.88575598930554]
深層画像は、未学習のネットワークが逆画像問題に対処できることを実証している。
ピークに達するとパフォーマンスが低下するので、いつ最適化を止めるかを決めるにはオラクルが必要です。
これらの問題に対処するために、スペクトルバイアスの観点から先行した深部画像について検討する。
論文 参考訳(メタデータ) (2021-07-02T15:10:42Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
本稿では,一般のSISRタスクを未知の劣化で扱うためのモデルベースunsupervised SISR法を提案する。
提案手法は, より小さなモデル (0.34M vs. 2.40M) だけでなく, より高速な技術 (SotA) 法 (約1dB PSNR) の現況を明らかに超えることができる。
論文 参考訳(メタデータ) (2021-07-02T11:55:40Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser [7.7288480250888]
我々は、ディープニューラルネットワークにおける暗黙の事前利用のための堅牢で一般的な手法を開発した。
ブラインド(ノイズレベルが未知の)を訓練したCNNが提示される。
このアルゴリズムの制約サンプリングへの一般化は、任意の線形逆問題を解決するために暗黙の手法を提供する。
論文 参考訳(メタデータ) (2020-07-27T15:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。