Beyond S-curves: Recurrent Neural Networks for Technology Forecasting
- URL: http://arxiv.org/abs/2211.15334v1
- Date: Mon, 28 Nov 2022 14:16:22 GMT
- Title: Beyond S-curves: Recurrent Neural Networks for Technology Forecasting
- Authors: Alexander Glavackij, Dimitri Percia David, Alain Mermoud, Angelika
Romanou, Karl Aberer
- Abstract summary: We develop an autencoder approach that employs recent advances in machine learning and time series forecasting.
S-curves forecasts largely exhibit a mean average percentage error (MAPE) comparable to a simple ARIMA baseline.
Our autoencoder approach improves the MAPE by 13.5% on average over the second-best result.
- Score: 60.82125150951035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of the considerable heterogeneity and complexity of the technological
landscape, building accurate models to forecast is a challenging endeavor. Due
to their high prevalence in many complex systems, S-curves are a popular
forecasting approach in previous work. However, their forecasting performance
has not been directly compared to other technology forecasting approaches.
Additionally, recent developments in time series forecasting that claim to
improve forecasting accuracy are yet to be applied to technological development
data. This work addresses both research gaps by comparing the forecasting
performance of S-curves to a baseline and by developing an autencoder approach
that employs recent advances in machine learning and time series forecasting.
S-curves forecasts largely exhibit a mean average percentage error (MAPE)
comparable to a simple ARIMA baseline. However, for a minority of emerging
technologies, the MAPE increases by two magnitudes. Our autoencoder approach
improves the MAPE by 13.5% on average over the second-best result. It forecasts
established technologies with the same accuracy as the other approaches.
However, it is especially strong at forecasting emerging technologies with a
mean MAPE 18% lower than the next best result. Our results imply that a simple
ARIMA model is preferable over the S-curve for technology forecasting.
Practitioners looking for more accurate forecasts should opt for the presented
autoencoder approach.
Related papers
- Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
arXiv Detail & Related papers (2024-08-29T08:36:22Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin technology creates virtual replicas of physical objects, processes, or systems by replicating their properties, data, and behaviors.
Digital Twin technology has leveraged Graph forecasting techniques in large-scale complex sensor networks to enable accurate forecasting and simulation of diverse scenarios.
We introduce a hybrid architecture that enhances the hypergraph representation learning backbone by incorporating fast adaptation to new patterns and memory-based retrieval of past knowledge.
arXiv Detail & Related papers (2024-08-22T14:08:45Z) - Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score.
We propose a novel framework for evaluating models from multiple perspectives.
We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques.
arXiv Detail & Related papers (2024-06-24T12:28:22Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Profit-oriented sales forecasting: a comparison of forecasting
techniques from a business perspective [3.613072342189595]
This paper compares a large array of techniques for 35 times series that consist of both industry data from the Coca-Cola Company and publicly available datasets.
It introduces a novel and completely automated profit-driven approach that takes into account the expected profit that a technique can create during both the model building and evaluation process.
arXiv Detail & Related papers (2020-02-03T14:50:24Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.