Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors
- URL: http://arxiv.org/abs/2408.16349v1
- Date: Thu, 29 Aug 2024 08:36:22 GMT
- Title: Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors
- Authors: Athul Rasheeda Satheesh, Peter Knippertz, Andreas H. Fink,
- Abstract summary: Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa, even after statistical postprocessing. AI-based forecasting models show promise but have avoided precipitation due to its complexity. Synoptic-scale forcings like African easterly waves and other tropical waves (TWs) are important for predictability in tropical Africa, yet their value for predicting daily rainfall remains unexplored. This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on TW predictors from satellite-based GPM IMERG data to predict daily rainfall during the July-September monsoon season. Predictor variables are derived from the local amplitude and phase information of seven TW from the target and up-and-downstream neighboring grids at 1-degree spatial resolution. The ML models are combined with Easy Uncertainty Quantification (EasyUQ) to generate calibrated probabilistic forecasts and are compared with three benchmarks: Extended Probabilistic Climatology (EPC15), ECMWF operational ensemble forecast (ENS), and a probabilistic forecast from the ENS control member using EasyUQ (CTRL EasyUQ). The study finds that downstream predictor variables offer the highest predictability, with downstream tropical depression (TD)-type wave-based predictors being most important. Other waves like mixed-Rossby gravity (MRG), Kelvin, and inertio-gravity waves also contribute significantly but show regional preferences. ENS forecasts exhibit poor skill due to miscalibration. CTRL EasyUQ shows improvement over ENS and marginal enhancement over EPC15. Both gamma regression and CNN forecasts significantly outperform benchmarks in tropical Africa. This study highlights the potential of ML models trained on TW-based predictors to improve daily precipitation forecasts in tropical Africa.
Related papers
- Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
State-of-the-art numerical weather prediction (NWP) models struggle to produce skillful rainfall forecasts in tropical regions of Africa.
We develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time.
We also find that combining our data-driven model with classical NWP further improves forecast accuracy.
arXiv Detail & Related papers (2024-10-17T22:07:53Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events [0.1747623282473278]
We compare weather prediction models and ECMWF's high-resolution forecast (HRES) system in three case studies.
We find evidence that machine learning weather prediction models can achieve similar accuracy to HRES on record-shattering events.
However, extrapolating to extreme conditions may impact machine learning models more severely than HRES.
arXiv Detail & Related papers (2024-04-26T18:18:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
We develop an autencoder approach that employs recent advances in machine learning and time series forecasting.
S-curves forecasts largely exhibit a mean average percentage error (MAPE) comparable to a simple ARIMA baseline.
Our autoencoder approach improves the MAPE by 13.5% on average over the second-best result.
arXiv Detail & Related papers (2022-11-28T14:16:22Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.