The Computation of Generalized Embeddings for Underwater Acoustic Target Recognition using Contrastive Learning
- URL: http://arxiv.org/abs/2505.12904v1
- Date: Mon, 19 May 2025 09:37:46 GMT
- Title: The Computation of Generalized Embeddings for Underwater Acoustic Target Recognition using Contrastive Learning
- Authors: Hilde I. Hummel, Arwin Gansekoele, Sandjai Bhulai, Rob van der Mei,
- Abstract summary: Sound pollution in marine environments poses an increased threat to ocean health.<n>By monitoring this noise, the sources responsible for this pollution can be mapped.<n>This generates a large amount of data records, capturing a mix of sound sources such as ship activities and marine mammal vocalizations.
- Score: 0.7145837421668514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing level of sound pollution in marine environments poses an increased threat to ocean health, making it crucial to monitor underwater noise. By monitoring this noise, the sources responsible for this pollution can be mapped. Monitoring is performed by passively listening to these sounds. This generates a large amount of data records, capturing a mix of sound sources such as ship activities and marine mammal vocalizations. Although machine learning offers a promising solution for automatic sound classification, current state-of-the-art methods implement supervised learning. This requires a large amount of high-quality labeled data that is not publicly available. In contrast, a massive amount of lower-quality unlabeled data is publicly available, offering the opportunity to explore unsupervised learning techniques. This research explores this possibility by implementing an unsupervised Contrastive Learning approach. Here, a Conformer-based encoder is optimized by the so-called Variance-Invariance-Covariance Regularization loss function on these lower-quality unlabeled data and the translation to the labeled data is made. Through classification tasks involving recognizing ship types and marine mammal vocalizations, our method demonstrates to produce robust and generalized embeddings. This shows to potential of unsupervised methods for various automatic underwater acoustic analysis tasks.
Related papers
- Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts [6.0882756122009996]
Noise in data appears to be inevitable in most real-world machine learning applications.<n>We investigate the less explored area of noisy label learning for multilabel classifications.<n>Our model posits that label noise arises from a shift in the latent variable, providing a more robust and beneficial means for noisy learning.
arXiv Detail & Related papers (2025-02-20T05:41:52Z) - A Novel Score-CAM based Denoiser for Spectrographic Signature Extraction without Ground Truth [0.0]
This paper develops a novel Score-CAM based denoiser to extract an object's signature from noisy spectrographic data.
In particular, this paper proposes a novel generative adversarial network architecture for learning and producing spectrographic training data.
arXiv Detail & Related papers (2024-10-28T21:40:46Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - All Thresholds Barred: Direct Estimation of Call Density in Bioacoustic
Data [1.7916003204531015]
We propose a validation scheme for estimating call density in a body of data.
We use these distributions to predict site-level densities, which may be subject to distribution shifts.
arXiv Detail & Related papers (2024-02-23T14:52:44Z) - WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database [49.1574468325115]
We introduce textbfWhaleNet (Wavelet Highly Adaptive Learning Ensemble Network), a sophisticated deep ensemble architecture for the classification of marine mammal vocalizations.
We achieve an improvement in classification accuracy by $8-10%$ over existing architectures, corresponding to a classification accuracy of $97.61%$.
arXiv Detail & Related papers (2024-02-20T11:36:23Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Explainable Artificial Intelligence driven mask design for
self-supervised seismic denoising [0.0]
Self-supervised coherent noise suppression methods require extensive knowledge of the noise statistics.
We propose the use of explainable artificial intelligence approaches to see inside the black box that is the denoising network.
We show that a simple averaging of the Jacobian contributions over a number of randomly selected input pixels, provides an indication of the most effective mask.
arXiv Detail & Related papers (2023-07-13T11:02:55Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - On-the-fly Denoising for Data Augmentation in Natural Language
Understanding [101.46848743193358]
We propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.
Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.
arXiv Detail & Related papers (2022-12-20T18:58:33Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.