論文の概要: Noise-resilient approach for deep tomographic imaging
- arxiv url: http://arxiv.org/abs/2211.15456v1
- Date: Tue, 22 Nov 2022 01:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:07:26.014144
- Title: Noise-resilient approach for deep tomographic imaging
- Title(参考訳): 深部断層撮影におけるノイズレジリエントアプローチ
- Authors: Zhen Guo, Zhiguang Liu, Qihang Zhang, George Barbastathis, Michael E.
Glinsky
- Abstract要約: X線トモグラフィーのためのノイズ耐性深部再構成アルゴリズムを提案する。
我々のフレームワークの利点は、低光子断層撮影を可能にする可能性がある。
- 参考スコア(独自算出の注目度): 3.975061129600655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a noise-resilient deep reconstruction algorithm for X-ray
tomography. Our approach shows strong noise resilience without obtaining noisy
training examples. The advantages of our framework may further enable
low-photon tomographic imaging.
- Abstract(参考訳): X線トモグラフィーのためのノイズ耐性深部再構成アルゴリズムを提案する。
提案手法は,うるさいトレーニング例を得ることなく,強い耐雑音性を示す。
我々のフレームワークの利点は、低光子断層撮影を可能にする可能性がある。
関連論文リスト
- Back to Basics: Fast Denoising Iterative Algorithm [0.0]
ノイズ低減のための高速反復アルゴリズムであるBack to Basics (BTB)を紹介する。
光コヒーレンス・トモグラフィー(OCT)における白色ガウス雑音の存在下での自然像,ポアソン分布画像デノイング,スペックル抑制の3症例について検討した。
実験結果から,提案手法は画像品質を効果的に向上しうることを示す。
論文 参考訳(メタデータ) (2023-11-11T18:32:06Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
本稿では,デノナイジングネットワークの一般化性能を高めるための新しい手法を提案する。
提案手法では,入力画像のランダムなピクセルをマスキングし,学習中に欠落した情報を再構成する。
提案手法は,他のディープラーニングモデルよりも優れた一般化能力を示し,実世界のシナリオに直接適用可能である。
論文 参考訳(メタデータ) (2023-03-23T09:33:44Z) - CurvPnP: Plug-and-play Blind Image Restoration with Deep Curvature
Denoiser [7.442030347967277]
既存のプラグアンドプレイ画像復元法は、非盲検に設計されている。
本稿では,より複雑な画像復元問題に対処できる,視覚障害者のための新しい枠組みを提案する。
本モデルでは,ノイズレベルが異なる場合でも,微細な構造を再現できることが示されている。
論文 参考訳(メタデータ) (2022-11-14T11:30:24Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
本稿では,信号の代わりにノイズから学習するための拡散確率モデルを提案する。
本手法は,簡単な作業パイプラインと少量のトレーニングデータを用いて,画像品質を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-01-27T19:02:38Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
光音響顕微鏡(PAM)画像は、レーザー強度の最大許容露光、組織内の超音波の減衰、トランスデューサ固有のノイズによってノイズに悩まされる。
そこで本研究では,PAM画像から複雑なノイズを取り除くための深層学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-01-12T05:13:57Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
CMOS光センサの撮像パイプラインにおけるノイズ統計について検討する。
実雑音構造を正確に特徴付けることのできる包括的ノイズモデルを定式化する。
我々のノイズモデルは、学習に基づく低照度復調アルゴリズムのためのリアルなトレーニングデータを合成するのに利用できる。
論文 参考訳(メタデータ) (2021-08-04T16:36:29Z) - A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images [0.0]
超音波画像のリアルタイムデノライゼーションのための普遍的ディープラーニングフレームワークを定義した。
超音波画像の平滑化のための最先端手法の解析と比較を行った。
そこで本研究では,選択された最新デノイジング手法のチューニング版を提案する。
論文 参考訳(メタデータ) (2021-01-22T14:18:47Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。