Self Supervised Clustering of Traffic Scenes using Graph Representations
- URL: http://arxiv.org/abs/2211.15508v1
- Date: Thu, 24 Nov 2022 22:52:55 GMT
- Title: Self Supervised Clustering of Traffic Scenes using Graph Representations
- Authors: Maximilian Zipfl, Moritz Jarosch, J. Marius Z\"ollner
- Abstract summary: We present a data-driven method to cluster traffic scenes that is self-supervised, i.e. without manual labelling.
We leverage the semantic scene graph model to create a generic graph embedding of the traffic scene, which is then mapped to a low-dimensional embedding space using a Siamese network.
In the training process of our novel approach, we augment existing traffic scenes in the Cartesian space to generate positive similarity samples.
- Score: 2.658812114255374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Examining graphs for similarity is a well-known challenge, but one that is
mandatory for grouping graphs together. We present a data-driven method to
cluster traffic scenes that is self-supervised, i.e. without manual labelling.
We leverage the semantic scene graph model to create a generic graph embedding
of the traffic scene, which is then mapped to a low-dimensional embedding space
using a Siamese network, in which clustering is performed. In the training
process of our novel approach, we augment existing traffic scenes in the
Cartesian space to generate positive similarity samples. This allows us to
overcome the challenge of reconstructing a graph and at the same time obtain a
representation to describe the similarity of traffic scenes. We could show,
that the resulting clusters possess common semantic characteristics. The
approach was evaluated on the INTERACTION dataset.
Related papers
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Location-Free Scene Graph Generation [45.366540803729386]
Scene Graph Generation (SGG) is a visual understanding task, aiming to describe a scene as a graph of entities and their relationships with each other.
Existing works rely on location labels in form of bounding boxes or segmentation masks, increasing annotation costs and limiting dataset expansion.
We break this dependency and introduce location-free scene graph generation (LF-SGG)
This new task aims at predicting instances of entities, as well as their relationships, without the explicit calculation of their spatial localization.
arXiv Detail & Related papers (2023-03-20T08:57:45Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Graph Representation Learning for Road Type Classification [13.227651826285014]
We present a learning-based approach to graph representations of road networks employing state-of-the-art graph convolutional neural networks.
Our approach is applied to realistic road networks of 17 cities from Open Street Map.
arXiv Detail & Related papers (2021-07-16T09:32:58Z) - Understanding Dynamic Scenes using Graph Convolution Networks [22.022759283770377]
We present a novel framework to model on-road vehicle behaviors from a sequence of temporally ordered frames as grabbed by a moving camera.
We show a seamless transfer of learning to multiple datasets without resorting to fine-tuning.
Such behavior prediction methods find immediate relevance in a variety of navigation tasks.
arXiv Detail & Related papers (2020-05-09T13:05:06Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.