論文の概要: Graph Convolutional Network for Multi-Target Multi-Camera Vehicle
Tracking
- arxiv url: http://arxiv.org/abs/2211.15538v1
- Date: Mon, 28 Nov 2022 16:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 18:56:28.657536
- Title: Graph Convolutional Network for Multi-Target Multi-Camera Vehicle
Tracking
- Title(参考訳): マルチターゲットマルチカメラ車両追跡のためのグラフ畳み込みネットワーク
- Authors: Elena Luna, Juan Carlos San Miguel, Jos\'e Mar\'ia Mart\'inez, and
Marcos Escudero-Vi\~nolo
- Abstract要約: グラフ畳み込みネットワークを訓練することにより,シングルカメラの軌跡をマルチカメラのグローバル軌跡に関連付けることを提案する。
当社のアプローチは,グローバルなソリューションを提供する全カメラを同時に処理すると同時に,大規模カメラの非同期化にも堅牢である。
- 参考スコア(独自算出の注目度): 0.9838524550457185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter focuses on the task of Multi-Target Multi-Camera vehicle
tracking. We propose to associate single-camera trajectories into multi-camera
global trajectories by training a Graph Convolutional Network. Our approach
simultaneously processes all cameras providing a global solution, and it is
also robust to large cameras unsynchronizations. Furthermore, we design a new
loss function to deal with class imbalance. Our proposal outperforms the
related work showing better generalization and without requiring ad-hoc manual
annotations or thresholds, unlike compared approaches.
- Abstract(参考訳): このレターはマルチターゲットマルチカメラ車両追跡のタスクに焦点を当てている。
グラフ畳み込みネットワークを訓練することにより,シングルカメラの軌跡をマルチカメラのグローバル軌跡に関連付けることを提案する。
当社のアプローチは,グローバルソリューションを提供するすべてのカメラを同時に処理すると同時に,大規模カメラの非同期化にも堅牢です。
さらに,クラス不均衡に対処する新たな損失関数を設計する。
提案手法は,比較手法と異なり,アドホックな手動アノテーションやしきい値を必要としない,より優れた一般化を示す。
関連論文リスト
- BlinkTrack: Feature Tracking over 100 FPS via Events and Images [50.98675227695814]
本稿では,RGB画像とイベントデータを統合した新しいフレームワークであるBlinkTrackを提案する。
本手法は,従来のカルマンフィルタを学習ベースのフレームワークに拡張し,イベントおよびイメージの分岐において微分可能なカルマンフィルタを利用する。
実験の結果、BlinkTrackは既存のイベントベースの手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-09-26T15:54:18Z) - GMT: A Robust Global Association Model for Multi-Target Multi-Camera Tracking [13.305411087116635]
本稿では,第1追跡段階への依存を2段階の手法で解決し,クロスカメラマッチングを向上するオンラインMTMC追跡モデルを提案する。
具体的には,トランスフォーマーをベースとしたグローバルMTMCアソシエーションモジュールを提案し,様々なカメラやフレームを対象とするアソシエーションを探索する。
高シーンの多様性と複雑な照明条件の変化に対応するため、VisionTrackデータセットを構築した。
論文 参考訳(メタデータ) (2024-07-01T06:39:14Z) - City-Scale Multi-Camera Vehicle Tracking System with Improved Self-Supervised Camera Link Model [0.0]
本稿では,自己監督型カメラリンクモデルを用いた,革新的なマルチカメラ車両追跡システムを提案する。
提案手法は,61.07%のIDF1スコアを有するCityFlow V2ベンチマークにおいて,自動カメラリンク方式の最先端性を実現する。
論文 参考訳(メタデータ) (2024-05-18T17:28:35Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
既存の手法では、純粋な視覚的マッチングや時間的制約を考慮することが多いが、カメラネットワークの空間情報は無視する。
本稿では,時間的情報と空間的情報を統合したクロスカメラ生成に基づく歩行者検索フレームワークを提案する。
本手法の有効性を検証するため,最初のカメラ横断歩行者軌跡データセットを構築した。
論文 参考訳(メタデータ) (2022-04-27T13:10:48Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
本研究では,複数の周囲からの情報を組み込んだSurroundDepth法を提案し,カメラ間の深度マップの予測を行う。
具体的には、周囲のすべてのビューを処理し、複数のビューから情報を効果的に融合するクロスビュー変換器を提案する。
実験において,本手法は,挑戦的なマルチカメラ深度推定データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-04-07T17:58:47Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera
Multi-Object Tracking [42.87953709286856]
マルチカメラ マルチオブジェクト追跡は、現実のアプリケーションにおいて優れた性能を持つため、コンピュータビジョン分野において現在注目されている。
本稿では,空間時空間昇降型マルチカット定式化に基づく数学的にエレガントなマルチカメラ・マルチオブジェクト追跡手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T14:09:47Z) - Balancing the Budget: Feature Selection and Tracking for Multi-Camera
Visual-Inertial Odometry [3.441021278275805]
因子グラフ最適化に基づくマルチカメラビジュアル慣性オドメトリーシステムを提案する。
攻撃的な動きと突然の照明変化を伴う狭い廊下や暗い空間など、困難な環境における動き追跡に焦点をあてる。
論文 参考訳(メタデータ) (2021-09-13T13:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。