論文の概要: GMT: A Robust Global Association Model for Multi-Target Multi-Camera Tracking
- arxiv url: http://arxiv.org/abs/2407.01007v1
- Date: Mon, 1 Jul 2024 06:39:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 00:25:59.893197
- Title: GMT: A Robust Global Association Model for Multi-Target Multi-Camera Tracking
- Title(参考訳): GMT:マルチターゲットマルチカメラ追跡のためのロバストグローバルアソシエーションモデル
- Authors: Huijie Fan, Tinghui Zhao, Qiang Wang, Baojie Fan, Yandong Tang, LianQing Liu,
- Abstract要約: 本稿では,第1追跡段階への依存を2段階の手法で解決し,クロスカメラマッチングを向上するオンラインMTMC追跡モデルを提案する。
具体的には,トランスフォーマーをベースとしたグローバルMTMCアソシエーションモジュールを提案し,様々なカメラやフレームを対象とするアソシエーションを探索する。
高シーンの多様性と複雑な照明条件の変化に対応するため、VisionTrackデータセットを構築した。
- 参考スコア(独自算出の注目度): 13.305411087116635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the task of multi-target multi-camera (MTMC) tracking of pedestrians, the data association problem is a key issue and main challenge, especially with complications arising from camera movements, lighting variations, and obstructions. However, most MTMC models adopt two-step approaches, thus heavily depending on the results of the first-step tracking in practical applications. Moreover, the same targets crossing different cameras may exhibit significant appearance variations, which further increases the difficulty of cross-camera matching. To address the aforementioned issues, we propose a global online MTMC tracking model that addresses the dependency on the first tracking stage in two-step methods and enhances cross-camera matching. Specifically, we propose a transformer-based global MTMC association module to explore target associations across different cameras and frames, generating global trajectories directly. Additionally, to integrate the appearance and spatio-temporal features of targets, we propose a feature extraction and fusion module for MTMC tracking. This module enhances feature representation and establishes correlations between the features of targets across multiple cameras. To accommodate high scene diversity and complex lighting condition variations, we have established the VisionTrack dataset, which enables the development of models that are more generalized and robust to various environments. Our model demonstrates significant improvements over comparison methods on the VisionTrack dataset and others.
- Abstract(参考訳): 歩行者のマルチターゲットマルチカメラ(MTMC)追跡作業において、特にカメラの動き、照明の変動、障害物による合併症が主な課題であり、データアソシエーションの問題である。
しかし、ほとんどのMTMCモデルは2段階のアプローチを採用しており、実用的なアプリケーションにおける第1段階の追跡結果に大きく依存する。
さらに、異なるカメラを横断する同じターゲットは、大きな外観変化を示す可能性があるため、クロスカメラマッチングの難しさをさらに高めることができる。
上記の問題に対処するため,第1のトラッキングステージへの依存を2ステップで解決し,クロスカメラマッチングを向上する,グローバルなオンラインMTMC追跡モデルを提案する。
具体的には、トランスフォーマーをベースとしたグローバルMTMCアソシエーションモジュールを提案し、様々なカメラやフレームを対象とするアソシエーションを探索し、グローバルなトラジェクトリを直接生成する。
さらに,ターゲットの外観と時空間的特徴を統合するため,MTMC追跡のための特徴抽出と融合モジュールを提案する。
このモジュールは特徴表現を強化し、複数のカメラにまたがるターゲットの特徴間の相関を確立する。
高シーンの多様性と複雑な照明条件の変動に対応するため、様々な環境に対してより一般化され堅牢なモデルの開発を可能にするVisionTrackデータセットを構築した。
我々のモデルは、VisionTrackデータセットなどの比較手法よりも大幅に改善されていることを示す。
関連論文リスト
- DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
本稿では,スムーズなカメラ軌跡を推定し,野生のカジュアルビデオのための高密度点雲を得るための,簡潔でエレガントでロバストなパイプラインを提案する。
提案手法は,複雑な動的課題シーンにおいても,カメラポーズ推定による最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T13:01:16Z) - MCTR: Multi Camera Tracking Transformer [45.66952089591361]
Multi-Camera Tracking tRansformer (MCTR)は、マルチオブジェクト検出と複数のカメラ間のトラッキングに適した、エンドツーエンドのアプローチである。
MCTRは、Detector TRansformer (DETR)のようなエンドツーエンドの検出器を利用して、カメラビューごとに独立して検出および検出埋め込みを生成する。
このフレームワークは、追跡されたオブジェクトに関するグローバル情報を付加する一連のトラック埋め込みを維持し、ビュー固有の検出埋め込みからローカル情報を統合することで、各フレームでそれらを更新する。
論文 参考訳(メタデータ) (2024-08-23T17:37:03Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - Towards Effective Multi-Moving-Camera Tracking: A New Dataset and Lightweight Link Model [4.581852145863394]
Multi-target Multi-camera (MTMC) トラッキングシステムは,SCT ( Single-camera Track) とICT (Inter-camera Track) の2つのモジュールで構成されている。
MTMCの追跡は非常に複雑な作業だが、複数の移動カメラを横切るとさらに困難になる。
同一ターゲットの2つの解離トラックレットを同一カメラ内の完全な軌跡に関連付けることにより、識別スイッチを緩和する。
論文 参考訳(メタデータ) (2023-12-18T09:11:28Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
汎用の双方向アダプタを用いたマルチモーダル視覚プロンプト追跡モデルを提案する。
我々は、モーダリティ固有の情報をあるモーダリティから別のモーダリティへ転送するための、シンプルだが効果的なライト・フィーチャー・アダプタを開発した。
本モデルでは,完全微調整法と素早い学習法の両方と比較して,追跡性能が優れている。
論文 参考訳(メタデータ) (2023-12-17T05:27:31Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
微粒な軌跡条件の運動制御が可能な新しい映像生成フレームワークであるTrackDiffusionを提案する。
TrackDiffusionの重要なコンポーネントは、複数のオブジェクトのフレーム間の一貫性を明確に保証するインスタンスエンハンサーである。
TrackDiffusionによって生成されたビデオシーケンスは、視覚知覚モデルのトレーニングデータとして使用できる。
論文 参考訳(メタデータ) (2023-12-01T15:24:38Z) - DyGLIP: A Dynamic Graph Model with Link Prediction for Accurate
Multi-Camera Multiple Object Tracking [25.98400206361454]
Multi-Camera Multiple Object Tracking (MC-MOT) は、複数の実世界のアプリケーションに適用可能になったため、重要なコンピュータビジョンの問題である。
本研究では,データアソシエーションタスクを解決するために,リンク予測を用いた動的グラフモデルを提案する。
実験結果から,既存のMC-MOTアルゴリズムよりも,いくつかの実用的なデータセットにおいて大きなマージンを達成できた。
論文 参考訳(メタデータ) (2021-06-12T20:22:30Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
論文 参考訳(メタデータ) (2020-07-30T16:39:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。