論文の概要: GPT-Neo for commonsense reasoning -- a theoretical and practical lens
- arxiv url: http://arxiv.org/abs/2211.15593v2
- Date: Wed, 27 Sep 2023 08:01:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 22:12:55.038702
- Title: GPT-Neo for commonsense reasoning -- a theoretical and practical lens
- Title(参考訳): GPT-Neo for commonsense reasoning --理論的・実用的レンズ
- Authors: Rohan Kashyap, Vivek Kashyap, Narendra C.P.
- Abstract要約: 我々は6ドルのコモンセンス推論ベンチマークタスクを用いてGPT-neoモデルの性能を評価する。
我々は,GPT-neoモデルを用いて,より大規模なモデルベースラインに対して,より小さなモデルの性能を検討することを目的とする。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has demonstrated substantial gains in pre-training large-language
models (LLMs) followed by supervised fine-tuning on the downstream task. In
this paper, we evaluate the performance of the GPT-neo model using $6$
commonsense reasoning benchmark tasks. We aim to examine the performance of
smaller models using the GPT-neo models against several larger model baselines
such as GPT-$3$, Llama-$2$, MPT and Falcon. Upon fine-tuning with the
appropriate set of hyperparameters, our model achieves competitive accuracy on
several tasks. We also investigate and substantiate our results using
attention-head visualization to better understand the model performance.
Finally, we conduct various robustness tests using various methods to gauge the
model performance under numerous settings.
- Abstract(参考訳): 近年の研究では、大言語モデル(llm)の事前学習と、下流タスクの微調整が大幅に向上している。
本稿では,6ドルのコモンセンス推論ベンチマークタスクを用いて,GPT-neoモデルの性能を評価する。
我々は, GPT-neoモデルを用いて, GPT-$3$, Llama-$2$, MPT, Falconなどの大規模モデルベースラインに対して, 小型モデルの性能を検討することを目的とする。
最適なハイパーパラメータセットで微調整を行うと、複数のタスクで競合精度が達成される。
また,モデルの性能をよりよく理解するために注意頭可視化を用いた結果の検証と検証を行った。
最後に,様々な手法を用いて様々なロバストネステストを行い,多数の設定でモデル性能を測定した。
関連論文リスト
- GPT vs RETRO: Exploring the Intersection of Retrieval and Parameter-Efficient Fine-Tuning [48.71952325015267]
PEFT法を改良型Retrieval-Enhanced Transformer (RETRO) およびベースラインGPTモデルに適用する。
本稿では、RETROモデルが、独自の事前学習プロセスにより、ゼロショット設定でGPTモデルより優れていることを示す。
本研究は, GPTモデルとRETROモデルの両方に適用された各種PEFT法をRAGと統合した最初の包括的比較である。
論文 参考訳(メタデータ) (2024-07-05T14:16:47Z) - Efficiency at Scale: Investigating the Performance of Diminutive
Language Models in Clinical Tasks [2.834743715323873]
本稿では,臨床意思決定タスクにおけるPEFT法の適合性について検討する。
分析の結果,ほとんどのPEFT手法の性能はタスクによって大きく異なることがわかった。
臨床領域におけるPEFT法の有効性は明らかであり、特に低コストで社内の計算インフラで運用できる専門モデルでは顕著である。
論文 参考訳(メタデータ) (2024-02-16T11:30:11Z) - Astraios: Parameter-Efficient Instruction Tuning Code Large Language
Models [21.17021844323919]
Astraiosは7つのチューニングメソッドと最大16億のパラメータの4つのモデルサイズを使用して、命令チューニングされた28のOctoCoderモデルのスイートである。
その結果、FFTは全スケールで最高のダウンストリーム性能を示し、PEFT法はモデルスケールに基づいてその有効性に大きな違いがあることがわかった。
論文 参考訳(メタデータ) (2024-01-01T15:30:19Z) - PanGu-$\pi$: Enhancing Language Model Architectures via Nonlinearity
Compensation [97.78045712375047]
大規模言語モデル(LLM)のための新しい効率的なモデルアーキテクチャを提案する。
そこで,PanGu-$pi$-7Bは,約10%の推論速度を持つベンチマークに匹敵する性能が得られることを示す。
さらに,PanGu-$pi$-7Bを金融法と法律の高価値領域に導入し,実践的応用のためにYunShanというLLMを開発した。
論文 参考訳(メタデータ) (2023-12-27T11:49:24Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks [4.872984658007499]
ディープ平衡モデル(Deep Equilibrium Models, DEQ)のような暗黙のモデルは、無限層のモデルを訓練する能力によって、コミュニティにおいて大きな注目を集めている。
暗黙のモデルの行を再検討し、それらを元の重み付けモデルに遡る。
驚くべきことに、重み付けモデルの方がDECの変種と比較して、より効率的で、安定であり、視覚タスク上でも効率的である。
論文 参考訳(メタデータ) (2023-07-16T11:45:35Z) - Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time [69.7693300927423]
複数モデルの重み付けを異なるパラメータ構成で微調整することにより,精度とロバスト性が向上することを示す。
モデルスープ手法は,複数の画像分類や自然言語処理タスクにまで拡張されている。
論文 参考訳(メタデータ) (2022-03-10T17:03:49Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
このようなモデルの2つの一般的なクラス、すなわちニューラルネットワークのアンサンブルと専門家のスパースミックス(スパースMoE)の相互作用について研究する。
Efficient Ensemble of Experts (E$3$)は、両モデルのクラスを最大限に活用するスケーラブルでシンプルなMoEのアンサンブルであり、深いアンサンブルよりも最大45%少ないFLOPを使用する。
論文 参考訳(メタデータ) (2021-10-07T11:58:35Z) - Exploring Sparse Expert Models and Beyond [51.90860155810848]
Mixture-of-Experts (MoE) モデルは、無数のパラメータを持つが、一定の計算コストで有望な結果が得られる。
本稿では,専門家を異なるプロトタイプに分割し,上位1ドルのルーティングに$k$を適用する,エキスパートプロトタイピングというシンプルな手法を提案する。
この戦略は, モデル品質を向上させるが, 一定の計算コストを維持するとともに, 大規模モデルのさらなる探索により, 大規模モデルの訓練に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-05-31T16:12:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。