SatlasPretrain: A Large-Scale Dataset for Remote Sensing Image
Understanding
- URL: http://arxiv.org/abs/2211.15660v3
- Date: Mon, 21 Aug 2023 15:09:13 GMT
- Title: SatlasPretrain: A Large-Scale Dataset for Remote Sensing Image
Understanding
- Authors: Favyen Bastani and Piper Wolters and Ritwik Gupta and Joe Ferdinando
and Aniruddha Kembhavi
- Abstract summary: We present SatlasPretrain, a remote sensing dataset that is large in both breadth and scale.
We evaluate eight baselines and a proposed method on SatlasPretrain, and find substantial room for improvement.
- Score: 24.36102266621857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote sensing images are useful for a wide variety of planet monitoring
applications, from tracking deforestation to tackling illegal fishing. The
Earth is extremely diverse -- the amount of potential tasks in remote sensing
images is massive, and the sizes of features range from several kilometers to
just tens of centimeters. However, creating generalizable computer vision
methods is a challenge in part due to the lack of a large-scale dataset that
captures these diverse features for many tasks. In this paper, we present
SatlasPretrain, a remote sensing dataset that is large in both breadth and
scale, combining Sentinel-2 and NAIP images with 302M labels under 137
categories and seven label types. We evaluate eight baselines and a proposed
method on SatlasPretrain, and find that there is substantial room for
improvement in addressing research challenges specific to remote sensing,
including processing image time series that consist of images from very
different types of sensors, and taking advantage of long-range spatial context.
Moreover, we find that pre-training on SatlasPretrain substantially improves
performance on downstream tasks, increasing average accuracy by 18% over
ImageNet and 6% over the next best baseline. The dataset, pre-trained model
weights, and code are available at https://satlas-pretrain.allen.ai/.
Related papers
- Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Large-scale Weakly Supervised Learning for Road Extraction from
Satellite Imagery [9.28701721082481]
This paper proposes to leverage OpenStreetMap road data as weak labels and large scale satellite imagery to pre-train semantic segmentation models.
Using as much as 100 times more data than the widely used DeepGlobe road dataset, our model exceeds the top performer of the current DeepGlobe leaderboard.
arXiv Detail & Related papers (2023-09-14T16:16:57Z) - Revisiting pre-trained remote sensing model benchmarks: resizing and
normalization matters [3.797359376885946]
We show that by simply following the preprocessing steps used in pre-training, one can achieve significant performance improvements.
We show that ImageNet pre-training remains a competitive baseline for satellite imagery based transfer learning tasks.
arXiv Detail & Related papers (2023-05-22T19:57:13Z) - Supervised and Contrastive Self-Supervised In-Domain Representation
Learning for Dense Prediction Problems in Remote Sensing [0.0]
This paper explores the effectiveness of in-domain representations in both supervised and self-supervised forms to solve the domain difference between remote sensing and the ImageNet dataset.
For self-supervised pre-training, we have utilized the SimSiam algorithm as it is simple and does not need huge computational resources.
Our results have demonstrated that using datasets with a high spatial resolution for self-supervised representation learning leads to high performance in downstream tasks.
arXiv Detail & Related papers (2023-01-29T20:56:51Z) - An Empirical Study of Remote Sensing Pretraining [117.90699699469639]
We conduct an empirical study of remote sensing pretraining (RSP) on aerial images.
RSP can help deliver distinctive performances in scene recognition tasks.
RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, but it may still suffer from task discrepancies.
arXiv Detail & Related papers (2022-04-06T13:38:11Z) - Improving Fractal Pre-training [0.76146285961466]
We propose an improved pre-training dataset based on dynamically-generated fractal images.
Our experiments demonstrate that fine-tuning a network pre-trained using fractals attains 92.7-98.1% of the accuracy of an ImageNet pre-trained network.
arXiv Detail & Related papers (2021-10-06T22:39:51Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
Seasonal Contrast (SeCo) is an effective pipeline to leverage unlabeled data for in-domain pre-training of re-mote sensing representations.
SeCo will be made public to facilitate transfer learning and enable rapid progress in re-mote sensing applications.
arXiv Detail & Related papers (2021-03-30T18:26:39Z) - Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method [52.182698295053264]
We are interested in counting dense objects from remote sensing images. Compared with object counting in a natural scene, this task is challenging in the following factors: large scale variation, complex cluttered background, and orientation arbitrariness.
To address these issues, we first construct a large-scale object counting dataset with remote sensing images, which contains four important geographic objects.
We then benchmark the dataset by designing a novel neural network that can generate a density map of an input image.
arXiv Detail & Related papers (2020-08-28T03:47:49Z) - Counting dense objects in remote sensing images [52.182698295053264]
Estimating number of interested objects from a given image is a challenging yet important task.
In this paper, we are interested in counting dense objects from remote sensing images.
To address these issues, we first construct a large-scale object counting dataset based on remote sensing images.
We then benchmark the dataset by designing a novel neural network which can generate density map of an input image.
arXiv Detail & Related papers (2020-02-14T09:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.